knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "100%" )
This R package contains methods to detect the differential composition abundances between multiple conditions in singel-cell experiments.
The latest version of the DCATS
package is 0.99.0.
if (!requireNamespace("BiocManager")) install.packages("BiocManager") BiocManager::install("DCTAS")
The latest DCATS
package can be conveniently installed using the
devtools
package thus:
## install dependencies install.packages(c("MCMCpack", "matrixStats", "robustbase", "aod", "e1071")) ## dependencies for vignette install.packages(c("SeuratObject", "Seurat", "robustbase", "aod", "e1071")) devtools::install_github('satijalab/seurat-data')
# install.packages("devtools") devtools::install_github("holab-hku/DCATS", build_vignettes = TRUE)
You can also install DCATS
without building the vignette:
devtools::install_github("holab-hku/DCATS")
Download this repository to your local machine and open it in Rstudio as a project, and build it by install and restart.
The best place to start are the vignettes. From inside an R session,
load DCATS
and then browse the vignettes:
library(DCATS) browseVignettes("DCATS")
This is a basic example which shows you how to estimate a similarity matrix from KNN graph and do the differential abundance test using this similarity matrix.
library(DCATS) data("simulation") knn_mat = knn_simMat(simulation$knnGraphs, simulation$labels) sim_count = rbind(simulation$numb_cond1, simulation$numb_cond2) sim_design = data.frame(condition = c("c1", "c1", "c2")) knn_mat[colnames(sim_count),] res = dcats_GLM(as.matrix(sim_count), sim_design, similarity_mat = knn_mat) print(res$LRT_pvals)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.