R/alluvialMat.R

Defines functions alluvialMat

Documented in alluvialMat

#' @title alluvialMat
#' @import dplyr reshape2 ggplot2 ggalluvial viridis RColorBrewer
#' @importFrom grDevices colorRampPalette
#' @rawNamespace import(scales, except = viridis_pal)
#' @description Function to provide alluvial matrix for generating alluvial plot
#' @param   projection  a projection generated from projectR, ensure that full = TRUE while generating projection
#' @param   annotations a character vector of annotations for the data
#' @param   annotationName a charcter fof collective name of the annotations, default is "Cell type"
#' @param   annotationType a character indicating the type of data annotated, default is "Cell"
#' @param   plot logical indicating whether to return the alluvial plot, default is TRUE
#' @param   minPropExplained threshold for minimum proportion of samples that correspond to a pattern to be used for plotting
#' @param   pvalThreshold theshold level of significance for p-value
#' @param   qvalThreshold theshold level of significance for Benjamini-Hochberg corrected p-value
#' @return  A matrix to generate alluvial plots
#' @examples
#' projection <- projectR(data=p.ESepiGen4c1l$mRNA.Seq,loadings=AP.RNAseq6l3c3t$Amean,
#' dataNames = map.ESepiGen4c1l[["GeneSymbols"]], full = TRUE)
#' alluvialMat(projection,pd.ESepiGen4c1l$Condition)
#' @export

alluvialMat<-function(projection, annotations, annotationName = "Cell type", annotationType = "Cell", plot = TRUE, minPropExplained = 0.75, 
  pvalThreshold = 0.05,qvalThreshold = 0.05){
  if(!('pval' %in% names(projection))){
    stop("Please set arguemnt full = TRUE in projectR to generate projection with p-values")
  }
  sigPatternIdx<-apply(projection$pval,1,function(x){if(min(x,na.rm=TRUE)<=pvalThreshold){return(TRUE)} else{return(FALSE)}})
  projection$qval<-t(apply(projection$pval,1,function(x){p.adjust(x,method="BH")}))
  sigPatternIdx<-apply(projection$qval,1,function(x){if(min(x,na.rm=T)<=qvalThreshold){return(TRUE)} else{return(FALSE)}})
  sig<-as.data.frame(t(projection$qval[sigPatternIdx,]<=qvalThreshold))
  DM<-as.data.frame(cbind('celltype'=annotations,sig))  #possible issue when the numbe of annotations is less than significant patterns
  celltype_cells<-as.data.frame(table(annotations))
  colnames(celltype_cells)<-c('celltype','nCells_per_type')
  colnames(DM)[1] <- 'celltype'
  pattern_cells<-as.data.frame(colSums(sig*1,na.rm=T))
  colnames(pattern_cells)<-c('nCells_per_pattern')
  DM.summary<- DM %>%
    dplyr::select('celltype',starts_with("Pat")) %>%
    melt(id.vars=c('celltype'))
  DM.summary$value<-as.numeric(DM.summary$value)
  DM.summary<- as_tibble(DM.summary) %>%
    group_by(celltype,variable) %>%
    summarize(nCells=sum(value,na.rm=T))
  DM.summary<-merge(DM.summary,celltype_cells,by.x='celltype',by.y='celltype')
  DM.summary<-mutate(DM.summary,prop=nCells/nCells_per_type)
  DM.summary<-merge(DM.summary,pattern_cells,by.x='variable',by.y=0)
  DM.summary<- DM.summary %>%
    mutate(pattern_prop=nCells/nCells_per_pattern)
  if(plot == TRUE){
getPalette = colorRampPalette(brewer.pal(12, "Paired"))
minProp <- minPropExplained
plot.data<-subset(DM.summary,prop>minProp)
nPatterns<-length(unique(plot.data$variable))
nCelltype<-length(unique(plot.data$celltype))
p<-ggplot(plot.data,aes(y=prop,axis1=celltype,axis2=variable)) +
  geom_alluvium(aes(fill=celltype),color="black",size=0.2) +
  geom_stratum(width=1/12,fill="grey50",color="black") +
  geom_text(stat = ggalluvial::StatStratum , aes(label = after_stat(stratum))) + labs(y="") +
  scale_x_continuous(breaks=1:2, labels=c(annotationName, "Pattern")) +
  scale_y_continuous(breaks = pretty_breaks()) +
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
    panel.background = element_blank(), axis.line = element_line(colour = "black")) +
  scale_fill_manual(values=getPalette(nCelltype)) + guides(fill=FALSE) +
  ggtitle(paste0("Pattern explains at least ",minProp*100,"% of ",tolower(annotationType),"s in a given type"))
  #in a given *type* may not be ideal for all scenarios
plot(p)
  }
  colnames(DM.summary)[c(1:4,6)] <- c('Pattern',annotationName,paste0('n',annotationType,'s'),
    paste0('n',annotationType,'s_per_type'), paste0('n',annotationType,'s_per_pattern'))
  return(DM.summary)
}
genesofeve/projectoR documentation built on Nov. 16, 2024, 8:21 p.m.