#' Wrapper applying an edgeR differential analysis workflow
#'
#' \code{edgerWrp} is a wrapper using functions from the
#' \code{\link[edgeR:edgeR-package]{edgeR}} package (Robinson et al. 2010,
#' \emph{Bioinformatics}; McCarthy et al. 2012, \emph{Nucleic Acids Research})
#' to fit models and perform a moderated test for each entity.
#'
#' The function performs the following steps:
#' \itemize{
#' \item Create a \code{\link[edgeR]{DGEList}} object. If \code{lib_size} is
#' given, set the library sizes to these values, otherwise use the column sums
#' of the count matrix.
#' \item If \code{normalize} is \code{TRUE}, estimate normalization factors
#' using \code{\link[edgeR]{calcNormFactors}}.
#' \item Estimate dispersions with \code{\link[edgeR]{estimateDisp}}.
#' \item Depending on the value of \code{option}, apply either the LRT or
#' QLF edgeR workflows (i.e., either \code{\link[edgeR]{glmFit}} +
#' \code{\link[edgeR]{glmLRT}} or \code{\link[edgeR]{glmQLFit}} +
#' \code{\link[edgeR]{glmQLFTest}}), testing for the specified contrast.
#' }
#'
#' @author Ruizhu Huang
#' @export
#'
#' @param count A matrix with features (e.g., genes or microbes) in rows and
#' samples in columns.
#' @param lib_size A numeric vector with library sizes for each sample. If
#' \code{NULL} (default), the column sums of \code{count} are used.
#' @param option Either \code{"glm"} or \code{"glmQL"}. If \code{"glm"},
#' \code{\link[edgeR]{glmFit}} and \code{\link[edgeR]{glmLRT}} are used;
#' otherwise, \code{\link[edgeR]{glmQLFit}} and
#' \code{\link[edgeR]{glmQLFTest}} are used. Details about the difference
#' between the two options can be found in the help pages of
#' \code{\link[edgeR]{glmQLFit}}.
#' @param design A numeric design matrix, e.g. created by
#' \code{\link[stats]{model.matrix}}. Please refer to \code{design} in
#' \code{\link[edgeR]{glmQLFit}} and \code{\link[edgeR]{glmFit}} for
#' more details.
#' @param contrast A numeric vector specifying one contrast of
#' the linear model coefficients to be tested. Its length
#' must equal the number of columns of \code{design}. If \code{NULL}, the
#' last coefficient will be tested. Please refer to \code{contrast}
#' in \code{\link[edgeR]{glmQLFTest}} and \code{\link[edgeR]{glmLRT}} for
#' more details.
#' @param normalize A logical scalar, specifying whether normalization factors
#' should be calculated (using \code{\link[edgeR]{calcNormFactors}}).
#' @param normalize_method Normalization method to be used. Please refer to
#' \code{method} in \code{\link[edgeR]{calcNormFactors}} for more details.
#' @param ... More arguments to pass to \code{\link[edgeR]{glmFit}}
#' (if \code{option = "glm"} or \code{\link[edgeR]{glmQLFit}}
#' (if \code{option = "glmQL"}).
#'
#' @returns The output of \code{\link[edgeR]{glmQLFTest}} or
#' \code{\link[edgeR]{glmLRT}} depending on the specified \code{option}.
#'
#' @importFrom edgeR DGEList calcNormFactors estimateDisp glmFit glmLRT
#' glmQLFit glmQLFTest
#'
#' @examples
#' suppressPackageStartupMessages({
#' library(TreeSummarizedExperiment)
#' })
#' ## Read example data
#' x <- readRDS(system.file("extdata/da_sim_100_30_18de.rds",
#' package = "treeclimbR"))
#'
#' ## Run differential abundance analysis
#' out <- edgerWrp(count = assay(x), option = "glm",
#' design = model.matrix(~ group, data = colData(x)),
#' contrast = c(0, 1))
#'
#' ## The output is an edgeR DGELRT object
#' class(out)
#'
edgerWrp <- function(count, lib_size = NULL, option = c("glm", "glmQL"),
design, contrast = NULL, normalize = TRUE,
normalize_method = "TMM", ...) {
## Check input arguments
## -------------------------------------------------------------------------
.assertVector(x = count, type = "matrix")
.assertVector(x = lib_size, type = "numeric", allowNULL = TRUE,
len = ncol(count))
.assertVector(x = design, type = "matrix")
.assertVector(x = contrast, type = "numeric", allowNULL = TRUE,
len = ncol(design))
.assertScalar(x = normalize, type = "logical")
.assertScalar(x = normalize_method, type = "character")
## If the library size isn't given, the column sum is used
## -------------------------------------------------------------------------
if (is.null(lib_size)) {
lib_size <- apply(count, 2, sum)
}
## Create the DGEList
## -------------------------------------------------------------------------
y <- edgeR::DGEList(count, remove.zeros = FALSE)
y$samples$lib.size <- lib_size
## Normalization
## -------------------------------------------------------------------------
if (normalize) {
y <- edgeR::calcNormFactors(y, method = normalize_method)
}
## Estimate dispersion
## -------------------------------------------------------------------------
y <- edgeR::estimateDisp(y, design = design)
## Fit model and test contrast
## -------------------------------------------------------------------------
option <- match.arg(option)
if (option == "glm") {
fit <- edgeR::glmFit(y, design = design, ...)
lrt <- edgeR::glmLRT(fit, contrast = contrast)
} else {
fit <- edgeR::glmQLFit(y, design = design, ...)
lrt <- edgeR::glmQLFTest(fit, contrast = contrast)
}
return(lrt)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.