#'The process of geting the differential expression genes
#'
#' This function uses based method such as limma to get the differential expression gene
#'
#' the previous SPIA method and integrate the change of
#' of genes Pearson coefficient(PCC) from two groups. We proposed a set of three
#' pathway analysis methods based on the change of PCC. We applied these approaches
#' to colorectal cancer, lung cancer and Alzheimer's disease datasets and so on.
#'
#' @param dateset The dataset of cancer or disease from NCBI, such as GSE1145
#' @export
#' @return There are five variable values, exprs stand for gene expression profile,
#' normal stand for the number of normal samples, tumor stand for the number of tumor
#' samples, DE stand for the fold change of differential expression genes, ALL stand for
#' all genes of human
#' @examples
#' #import EnrichmentBrowser, KEGGandMetacoreDzPathwaysGEO, KEGGdzPathwaysGEO and SPIA package
#' library(EnrichmentBrowser)
#' library(KEGGandMetacoreDzPathwaysGEO)
#' library(KEGGdzPathwaysGEO)
#' library(SPIA)
#' data("GSE1145")
#' result <- process(GSE1145)
process <- function(dataset){
#change probe to gene symbol
all.eset <- probe.2.gene.eset(dataset)
# Normalization of gene expression profile
all.eset <- normalize(all.eset, norm.method="quantile")
after.norm <- exprs(all.eset)
exprs_norm <- data.frame(after.norm)
#table(pData(all.eset)$Group)
pData(all.eset)$GROUP <- ifelse(pData(all.eset)$Group == "d", 1, 0)
normal <- length(which(pData(all.eset)$GROUP == '0'))
tumor <- length(which(pData(all.eset)$GROUP == '1'))
# get differential expression genes
all.eset <- de.ana(all.eset)
head(fData(all.eset), n=4)
all_de <- fData(all.eset)
tg <- all_de[all_de$ADJ.PVAL < 0.1,]
# get fold change pf differential expression genes
DE = tg$FC
names(DE)<-as.vector(rownames(tg))
# get all gene names
ALL = rownames(all_de)
res = list(exprs = exprs_norm, normal = normal, tumor = tumor,
DE = DE, ALL = ALL)
return(res)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.