title: "SPIA-PCC: Signaling pathway impact analysis incorporated the change of Pearson correlation coefficient between two groups"
author: "Xianbin Li"
date: 'r Sys.Date()
'
output:
pdf_document: default
html_document: default
word_document: default
vignette: |
%\VignetteIndexEntry{narray Usage Examples} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8}
library(knitr) opts_chunk$set( cache = FALSE, echo = TRUE, warning = FALSE, error = FALSE, message = FALSE )
This R package provides function that uses the previous SPIA method and integrate the change of genes Pearson coefficient(PCC) from two groups. We proposed a set of three pathway analysis methods based on the change of PCC. We applied these approaches to colorectal cancer, lung cancer and Alzheimer's disease datasets and so on.
KEGGandMetacoreDzPathwaysGEO
package data for pathway analysisThis is to outline how to prepare expression data, in this case from the
KEGGandMetacoreDzPathwaysGEO
package for pathway analysis using spiap.
library(EnrichmentBrowser) library(KEGGandMetacoreDzPathwaysGEO) library(KEGGdzPathwaysGEO) library(SPIA) # load the dateset data("GSE1145") # get the gene expression matrix exprs_all <- exprs(GSE1145) # get the gene symbol of gene expression matrix all.eset <- probe.2.gene.eset(GSE1145) head(featureNames(all.eset)) # Normalization of gene expression profile before.norm <- exprs(all.eset) all.eset <- normalize(all.eset, norm.method="quantile") after.norm <- exprs(all.eset) # Change matrix to dataframe style exprs_all1 <- data.frame(after.norm) # plot of normalization par(mfrow=c(1,2)) boxplot(before.norm) boxplot(after.norm)
table(pData(all.eset)$Group) pData(all.eset)$GROUP <- ifelse(pData(all.eset)$Group == "d", 1, 0) normal <- length(which(pData(all.eset)$GROUP == '0')) tumor <- length(which(pData(all.eset)$GROUP == '1'))
# get differential expression genes all.eset <- de.ana(all.eset) head(fData(all.eset), n=4) all_de <- fData(all.eset) #The plot of differential expression genes par(mfrow=c(1,2)) pdistr(fData(all.eset)$ADJ.PVAL) volcano(fData(all.eset)$FC, fData(all.eset)$ADJ.PVAL)
# get pathway dataset kegg.gs <- get.kegg.genesets("hsa")
library(spiapcc) # get differential expression genes on threshold 0.1 tg <- all_de[all_de$ADJ.PVAL < 0.1,] # get fold change pf differential expression genes DE_colorectal = tg$FC names(DE_colorectal)<-as.vector(rownames(tg)) # get all gene names ALL_colorectal = rownames(all_de) #The result of spia method res_spia = spia(de = DE_colorectal, all=ALL_colorectal, organism="hsa",nB=2000,plots=FALSE,beta=NULL,combine="fisher",verbose=TRUE) res_spia <- res_spia[,-12] head(res_spia) gse_madat2 <- exprs_all1 # The results of spia_nt method res_nt = spiapcc(de=DE_colorectal, all=ALL_colorectal,normal = normal,tumor = tumor, gse_madat2 = gse_madat2,organism="hsa",nB=2000,plots=FALSE, beta=NULL,combine="fisher",verbose=T, flag = 1) res_nt <- res_nt[,-12] head(res_nt) #The results of spia_tn method res_tn = spiapcc( de=DE_colorectal, all=ALL_colorectal,normal = normal,tumor = tumor, gse_madat2 = gse_madat2,organism="hsa",nB=2000,plots=FALSE, beta=NULL,combine="fisher",verbose=T, flag = -1) res_tn <- res_tn[,-12] head(res_tn) #The results of spia_abs method res_abs = spiapcc( de=DE_colorectal, all=ALL_colorectal,normal = normal,tumor = tumor, gse_madat2 = gse_madat2,organism="hsa",nB=2000,plots=FALSE, beta=NULL,combine="fisher",verbose=T, flag = 0) res_abs <- res_abs[,-12] head(res_abs)
# data("GSE3467") result <- process(GSE3467) exprs_nrom <- result$exprs normal <- result$normal tumor <- result$tumor DE <- result$DE ALL <- result$ALL res = spiapcc( de=DE, all=ALL,normal = normal,tumor = tumor, gse_madat2 = exprs_nrom, organism="hsa",nB=2000,plots=FALSE, beta=NULL,combine="fisher",verbose=T, flag = 0) res <- res[,-12] head(res)
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.