#' MyCoV takes a fasta file or multi-fasta file as input
#'
#' @param fasta File name: the file containing the fasta-format sequences to be identified
#' @param temp_dir Folder name: the temporary folder in which to store files (eg. blast databse)
#'
#' @return A data frame summarising the BLAST results from the query
MyCoV = function (fasta=NULL, temp_dir=NULL){
if (is.null(fasta)) stop("Please provide a fasta file input")
if (is.null(temp_dir)) temp_dir=tempdir()
print("Welcome to MyCov")
print(paste0("Temporary files will be written to this location: ",temp_dir))
print("Reading query fasta file.")
tryCatch(expr={fas=Biostrings::readDNAStringSet(fasta)},error=function(e){stop("ERROR: Please provide a valid fasta file.")})
print(paste0("The query file contains ",length(fas)," sequence(s)."))
print("Removing spaces from sequence names.")
names(fas)=gsub(" ","_",names(fas))
print("Generating BLAST database")
tryCatch(expr={seqinr::write.fasta(as.list(paste(sequences)),names=as.list(names(sequences)),paste0(temp_dir,"/sequences.fasta"))},
error=function(e){stop("ERROR: YOU MUST HAVE READ/WRITE PERMISSIONS TO THE PROVIDED TEMPORARY DIRECTORY")})
system(paste0("makeblastdb -dbtype nucl -input_type fasta -in ",temp_dir,"/sequences.fasta -out ",temp_dir,"/sequences"),ignore.stdout = T,ignore.stderr = T)
print("Done.")
print("Writing query data to disk")
seqinr::write.fasta(as.list(paste(fas)),names=as.list(names(fas)),paste0(temp_dir,"/query.fasta"))
print("Done.")
if (length(fas)>100){
print("Running BLASTN. This might take a while (>100 sequences).")
} else {
print("Running BLASTN. This shouldn't take long (<100 sequences).")
}
system(paste0("blastn -query ",temp_dir,"/query.fasta -db ",temp_dir,"/sequences -outfmt '6 qaccver saccver pident length mismatch gapopen qstart qend sstart send evalue bitscore qseq sseq' -out ",temp_dir,"/results"))
print("Done.")
if(!file.info(paste0(temp_dir,"/results"))$size>0) stop("Your sequences returned no significant BLAST hits, perhaps they are not Coronavirus RdRp sequences from the correct locus?")
print("Loading BLASTN results.")
tab=read.table(paste0(temp_dir,"/results"),header=F,stringsAsFactors = F)
colnames(tab)=c("qaccver", "saccver", "pident", "length", "mismatch", "gapopen", "qstart", "qend", "sstart", "send", "evalue", "bitscore", "qseq", "sseq")
tab2=tab %>% dplyr::mutate(pid2=pident*length/387) %>% dplyr::group_by(qaccver) %>% dplyr::summarise(best_hit=saccver[pid2==max(pid2)][1],identity=max(pid2))
df=data.frame(query=names(fas),best_hit=NA,predicted_subgenus=NA,predicted_genus=NA,posterior_probability=NA,pairwise_identity=NA,stringsAsFactors = F)
df=df[df$query %in% tab2$qaccver,]
df$best_hit[match(tab2$qaccver,df$query)]=tab2$best_hit
df$pairwise_identity[match(tab2$qaccver,df$query)]=tab2$identity
df$predicted_subgenus=predictions$Assigned_subgenus[match(df$best_hit,predictions$X)]
df$predicted_genus=predictions$Assigned_genus[match(df$best_hit,predictions$X)]
df$posterior_probability=sapply(1:dim(df)[1],function(x) eval(parse(text = paste0("predictions$",df$predicted_subgenus[x],"[",match(df$best_hit[x],predictions$X),"]")))*100)
df$recombination=predictions$recombination[match(df$best_hit,predictions$X)]
print("Done. Now run tabulate_CoV and/or visualise_CoV on the output.")
print("If some of your sequences are missing from the list, this is because they did not have sufficient similarity to sequences in the query database to return any matches.")
print("Thanks for using MyCoV.")
print("I hope you found the genus:subgenus combo you were looking for.")
print("Remember to cite our paper.")
return(df)
}
#' tabulate_CoV takes the output of MyCoV as its input
#' It then uses 'formattable' to provide a summary of the classifications of the queried sequences.
#'
#' @param df data.frame: the output of the function MyCoV
#'
#' @return A 'formattable' object summarising the data
tabulate_CoV=function(df=NULL){
write.csv(df,"MyCoV_results.csv")
formattable::formattable(df,list(posterior_probability=formatter("span", style = function(x) style(display = "inline-block",
`border-radius` = "0px", `padding-right` = "0px",
`background-color` = formattable::csscolor(grDevices::colorRampPalette(c("red", "lightgreen"))(100)[round(x)]))),
pairwise_identity=formatter("span", style = function(x) style(display = "inline-block",
`border-radius` = "0px", `padding-right` = "0px",
`background-color` = formattable::csscolor(grDevices::colorRampPalette(c("red", "lightblue"))(100)[round(x)]))),
query=formattable::formatter("div", style = function(x) style(display = "inline-block", width = "200px", "align"="left","word-wrap"="break-word")),
best_hit=formattable::formatter("div", style = function(x) style(display = "inline-block",width = "200px", "align"="left","word-wrap"="break-word"))
))
}
#' visualise_CoV takes the output of MyCoV as its input
#' It then uses 'ggplot2' to provide a summary of the pairwise distances of the queried sequences to their closes BLAST hits in the context of all pairwise comparisons between Coronaviruses .
#'
#' @param df data.frame: the output of the function MyCoV
#'
#' @return A ggplot object summarising the data
visualise_CoV=function(df=NULL){
ggplot(CoV_dis)+
geom_histogram(aes(x=dist,fill=compare),bins=50,colour="black")+
scale_fill_manual(values = c("darkgreen","red"),name="Pairwise Comparison of Subgenera")+
geom_vline(data=df,aes(xintercept=1-(pairwise_identity/100)),linetype="dashed",colour="black")+
facet_wrap(~predicted_genus,scale="free")
}
#' plot_similarity takes a mono-fasta file as an iput
#' It then uses 'ggtree' to provide a summary of how the queried sequence compared to classified sequences in our phylogenetic study.
#' It also provides a visual summary of host and country or origin metadata associated with the classified sequences.
#'
#' Please remember to cite ggtree correctly if you go on to use this representation.
#'
#' @param fasta file: a fasta file containing a single dna sequence in fasta format
#' @param temp_dir Folder name: the temporary folder in which to store files (eg. blast databse)
#'
#' @return Saves the tree plot to "output_plot.pdf" in your working directory.
plot_similarity=function(fasta=NULL, temp_dir=NULL){
if (is.null(fasta)) stop("Please provide a fasta file input")
if (is.null(temp_dir)) temp_dir=tempdir()
print("Welcome to MyCov")
print(paste0("Temporary files will be written to this location: ",temp_dir))
print("Reading query fasta file.")
tryCatch(expr={fas=Biostrings::readDNAStringSet(fasta)},error=function(e){stop("ERROR: Please provide a valid fasta file.")})
if (length(fas)>1) stop("Please provide only a single sequence for comparison")
print("Removing spaces from sequence name.")
names(fas)=gsub(" ","_",names(fas))
print("Generating BLAST database")
tryCatch(expr={seqinr::write.fasta(as.list(paste(sequences)),names=as.list(names(sequences)),paste0(temp_dir,"/sequences.fasta"))},
error=function(e){stop("ERROR: YOU MUST HAVE READ/WRITE PERMISSIONS TO THE PROVIDED TEMPORARY DIRECTORY")})
system(paste0("makeblastdb -dbtype nucl -input_type fasta -in ",temp_dir,"/sequences.fasta -out ",temp_dir,"/sequences"),ignore.stdout = T,ignore.stderr = T)
print("Done.")
print("Writing query data to disk")
seqinr::write.fasta(as.list(paste(fas)),names=as.list(names(fas)),paste0(temp_dir,"/query.fasta"))
print("Done.")
print("Running BLASTN. This shouldn't take long.")
system(paste0("blastn -query ",temp_dir,"/query.fasta -db ",temp_dir,"/sequences -outfmt '6 qaccver saccver pident length mismatch gapopen qstart qend sstart send evalue bitscore qseq sseq' -out ",temp_dir,"/results"))
print("Done.")
if(!file.info(paste0(temp_dir,"/results"))$size>0) stop("Your sequences returned no significant BLAST hits, perhaps they are not Coronavirus RdRp sequences from the correct locus?")
print("Loading BLASTN results.")
tab=read.table(paste0(temp_dir,"/results"),header=F,stringsAsFactors = F)
colnames(tab)=c("qaccver", "saccver", "pident", "length", "mismatch", "gapopen", "qstart", "qend", "sstart", "send", "evalue", "bitscore", "qseq", "sseq")
tab$pid2=tab$pident*tab$length/387
tab=subset(tab,tab$pid2>70)
tab2=data.frame(id=tab$saccver,identity=tab$pid2)
tr=ape::extract.clade(phy = CoV_tree,node = phytools::findMRCA(tree = CoV_tree,tips = paste(tab2$id),type = "node"))
d = fortify(tr)
d = subset(d, isTip)
tips=with(d, label[order(y, decreasing=T)])
t=data.frame(id=tips,stringsAsFactors = F)
t=left_join(t,tab2,by="id")
t=left_join(t,md,by=c("id"="rep_seq"))
tr1=ggtree(tr) %<+% t
tr1$data$x=tr1$data$x/max(tr1$data$x)
a=tr1 +
geom_tippoint(aes(colour=identity,shape=identity==max(tab2$identity)))+
geom_tiplab(aes(label=round(identity,digits = 3)),size=1.5,x=1.01)+
geom_tiplab(aes(label=Assigned_subgenus),size=1.5,x=1.1)+
geom_tiplab(aes(label=label),size=1.5,x=1.3)+
scale_colour_gradientn(colours = c("red","yellow","green"))+
scale_size_manual(values = c(1,5))+
scale_shape_manual(values = c(20,18))+
xlim(0,2.5)+
ylim(0,length(tr$tip.label)+30)+
theme_tree()+
theme(legend.position="none")
t$host_taxon=factor(t$host_taxon)
t$continent=factor(t$continent)
t$id=factor(t$id,levels = rev(tips))
df3=t %>% group_by(id,host_taxon) %>% summarise(count=n())
df3t=df3 %>% group_by(host_taxon) %>% summarise(count=n())
df4=t %>% group_by(id,continent) %>% summarise(count=n())
df4t=df4 %>% group_by(continent) %>% summarise(count=n())
b=ggplot(df3)+
geom_tile(data=df3, aes(x=as.numeric(host_taxon),y=as.numeric(id),fill=ifelse(count>0,"blue",NA))) +
geom_text(data=df3t,aes(x=as.numeric(host_taxon),label=host_taxon,y=length(tr$tip.label)+1),angle=45,hjust=0,size=3)+
theme_tree()+
ylim(0,length(tr$tip.label)+30)+
xlim(0,max(as.numeric(df3$host_taxon))+7)+
scale_fill_manual(values="blue")+
theme(legend.position="none")
c=ggplot(df4)+
geom_tile(data=df4, aes(x=as.numeric(continent),y=as.numeric(id),fill=ifelse(count>0,"red",NA))) +
geom_text(data=df4t,aes(x=as.numeric(continent),label=continent,y=length(tr$tip.label)+1),angle=45,hjust=0,size=3)+
theme_tree()+
ylim(0,length(tr$tip.label)+30)+
xlim(0,max(as.numeric(df4$continent))+3)+
scale_fill_manual(values="red")+
theme(legend.position="none")
pdf(file = "output_plot.pdf",width=20,height=10)
ggtree::multiplot(a,b,c,ncol=3,widths=c(2,1,1))
dev.off()
print("Your plot has been written to 'output_plot.pdf' in your working directory.")
print("The best hit is highlighted by a diamond.")
wch=which(t$identity==max(t$identity,na.rm = T))
print("####THESE ARE THE BEST HIT DETAILS#####")
print(paste0("The best hit corresponds to :",t$id[wch]))
print(paste0("host : ",t$host_taxon[wch]," - ",t$species[wch]))
print(paste0("Date : ",t$date[wch]))
print(paste0("Country of origin : ",t$country[wch]))
print("Thanks for using MyCoV.")
print("I hope you found the genus:subgenus combo you were looking for.")
print("Remember to cite our paper.")
print("If you use plot_similarity, please also cite ggtree correctly")
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.