#' BatchStBH: Online batch FDR control using the St-BH procedure
#'
#' Implements the BatchSt-BH algorithm for online FDR control, as presented by
#' Zrnic et al. (2020). This algorithm makes one modification to the original
#' Storey-BH algorithm (Storey 2002), by adding 1 to the numerator of
#' the null proportion estimate for more stable results.
#'
#' The function takes as its input a dataframe with three columns: identifiers
#' (`id'), batch numbers (`batch') and p-values (`pval').
#'
#' The BatchSt-BH algorithm controls the FDR when the p-values in a batch are
#' independent, and independent across batches. Given an overall significance
#' level \eqn{\alpha}, we choose a sequence of non-negative numbers
#' \eqn{\gamma_i} such that they sum to 1. The algorithm runs the
#' Storey Benjamini-Hochberg procedure on each batch, where the values of the adjusted
#' significance thresholds \eqn{\alpha_{t+1}} depend on the number of previous
#' discoveries.
#'
#' Further details of the BatchSt-BH algorithm can be found in Zrnic et al.
#' (2020).
#'
#' @param d A dataframe with three columns: identifiers (`id'), batch numbers
#' (`batch') and p-values (`pval').
#'
#' @param alpha Overall significance level of the FDR procedure, the default is
#' 0.05.
#'
#' @param gammai Optional vector of \eqn{\gamma_i}. A default is provided with
#' \eqn{\gamma_j} proportional to \eqn{1/j^(1.6)}.
#'
#' @param lambda Threshold for Storey-BH, must be between 0 and 1. Defaults to
#' 0.5.
#'
#' @param display_progress Logical. If \code{TRUE} prints out a progress bar for the algorithm runtime.
#'
#' @return \item{out}{ A dataframe with the original data \code{d} and the
#' indicator function of discoveries \code{R}. Hypothesis \eqn{i} is rejected
#' if the \eqn{i}-th p-value within the \eqn{t}-th batch is less than or equal
#' to \eqn{(r/n)\alpha_t}, where \eqn{r} is the rank of the \eqn{i}-th p-value
#' within an ordered set and \eqn{n} is the total number of hypotheses within
#' the \eqn{t}-th batch. If hypothesis \eqn{i} is rejected, \code{R[i] = 1}
#' (otherwise \code{R[i] = 0}).}
#'
#' @references Storey, J.D. (2002). A direct approach to false discovery rates.
#' \emph{J. R. Statist. Soc. B}: 64, Part 3, 479-498.
#'
#' Zrnic, T., Jiang D., Ramdas A. and Jordan M. (2020). The Power of Batching
#' in Multiple Hypothesis Testing. \emph{International Conference on
#' Artificial Intelligence and Statistics}: 3806-3815
#'
#' @examples
#'
#' sample.df <- data.frame(
#' id = c('A15432', 'B90969', 'C18705', 'B49731', 'E99902',
#' 'C38292', 'A30619', 'D46627', 'E29198', 'A41418',
#' 'D51456', 'C88669', 'E03673', 'A63155', 'B66033'),
#' pval = c(2.90e-08, 0.06743, 0.01514, 0.08174, 0.00171,
#' 3.60e-05, 0.79149, 0.27201, 0.28295, 7.59e-08,
#' 0.69274, 0.30443, 0.00136, 0.72342, 0.54757),
#' batch = c(rep(1,5), rep(2,6), rep(3,4)))
#'
#' BatchStBH(sample.df)
#'
#' @export
BatchStBH <- function(d, alpha = 0.05, gammai, lambda = 0.5, display_progress = FALSE){
d <- checkPval(d)
if (!is.data.frame(d)) {
stop("d must be a dataframe")
} else if (!("batch" %in% colnames(d))) {
stop("d needs to have a column called batch")
}
if (alpha < 0 || alpha > 1) {
stop("alpha must be between 0 and 1.")
}
if (lambda <= 0 || lambda > 1) {
stop("lambda must be between 0 and 1.")
}
if(!is.numeric(d$batch)) {
stop("Check that your batch labels are numeric values.")
}
#check that batches were labeled correctly
if(is.unsorted(d$batch)) {
d <- d[order(d$batch),]
warning("Batches were re-ordered in increasing numeric value.")
}
n_batch <- length(unique(d$batch))
if (missing(gammai)) {
gammai <- 0.4374901658/(seq_len(n_batch)^(1.6))
} else if (any(gammai < 0)) {
stop("All elements of gammai must be non-negative.")
} else if (sum(gammai) > 1) {
stop("The sum of the elements of gammai must not be greater than 1.")
}
### Start Batch St-BH procedure
R <- NULL
Rplus <- Rsum <- Rrsum <- alphai <- k <- rep(0, n_batch)
alphai[1] <- gammai[1] * alpha
nt <- as.vector(table(d$batch))
batch_indices <- c(0, cumsum(nt))
if(display_progress) {
pb <- progress::progress_bar$new(format = " Computing [:bar] :percent eta: :eta",
total = n_batch, clear = FALSE, width = 60)
for(i in seq_len(n_batch)) {
pb$tick()
idx_b <- batch_indices[i]+1
idx_e <- batch_indices[i+1]
batch_pval <- .subset2(d, "pval")[idx_b:idx_e]
jvec <- nt[i]:1L
#sort pvals and then return the original indices of the sorted pvals
o <- order(batch_pval, decreasing = TRUE)
#sort the indices and then return the indices of the sorted indices
#effectively reverses the order
ro <- order(o)
#calculate pi0
n <- length(batch_pval)
candsum <- sum(batch_pval > lambda)
pi0 <- (candsum + 1)/((1 - lambda) * n)
out_R <- pmin(1, cummin(nt[i]/jvec * pi0 * batch_pval[o]))[ro] <= alphai[i]
R <- c(R, out_R)
Rsum[i] <- sum(out_R)
## k
if(max(batch_pval) > lambda) {
k[i] <- 1
}
#calculate Rsplus
#aug_rej is the number of rejections if we hallucinate jth pval to be 0
aug_rej <- rep(0,nt[i])
for (j in seq_len(nt[i])) {
#run St-BH procedure with hallucinated p-value
hallucinated_pval <- batch_pval
hallucinated_pval[j] <- 0
oh <- order(hallucinated_pval, decreasing = TRUE)
roh <- order(oh)
#calculate pi0
hallucinated_pi0 <- (sum(hallucinated_pval > lambda) + 1)/((1 - lambda)*n)
hallucinated_R <- pmin(1, cummin(nt[i]/jvec * hallucinated_pi0*hallucinated_pval[oh]))[roh] <= alphai[i]
aug_rej[j] <- sum(hallucinated_R, na.rm = TRUE)
}
Rplus[i] = max(aug_rej)
#update alphai
if(i < n_batch) {
gammasum <- sum(gammai[seq_len(i+1)]) * alpha
Rrsum[1:i] = sum(Rsum)-Rsum[1:i]
alphai[i+1] <- (gammasum - sum(k[1:i]*alphai[1:i]*(Rplus[1:i]/(Rplus[1:i] + Rrsum[1:i])))) *
((nt[i+1] + sum(Rsum))/nt[i+1])
}
}
out <- d
out$R <- as.numeric(R)
out$alphai <- rep(alphai, nt)
out
} else {
for(i in seq_len(n_batch)) {
idx_b <- batch_indices[i]+1
idx_e <- batch_indices[i+1]
batch_pval <- .subset2(d, "pval")[idx_b:idx_e]
jvec <- nt[i]:1L
#sort pvals and then return the original indices of the sorted pvals
o <- order(batch_pval, decreasing = TRUE)
#sort the indices and then return the indices of the sorted indices
#effectively reverses the order
ro <- order(o)
#calculate pi0
n <- length(batch_pval)
candsum <- sum(batch_pval > lambda)
pi0 <- (candsum + 1)/((1 - lambda) * n)
out_R <- pmin(1, cummin(nt[i]/jvec * pi0 * batch_pval[o]))[ro] <= alphai[i]
R <- c(R, out_R)
Rsum[i] <- sum(out_R)
## k
if(max(batch_pval) > lambda) {
k[i] <- 1
}
#calculate Rsplus
#aug_rej is the number of rejections if we hallucinate jth pval to be 0
aug_rej <- rep(0,nt[i])
for (j in seq_len(nt[i])) {
#run St-BH procedure with hallucinated p-value
hallucinated_pval <- batch_pval
hallucinated_pval[j] <- 0
oh <- order(hallucinated_pval, decreasing = TRUE)
roh <- order(oh)
#calculate pi0
hallucinated_pi0 <- (sum(hallucinated_pval > lambda) + 1)/((1 - lambda)*n)
hallucinated_R <- pmin(1, cummin(nt[i]/jvec * hallucinated_pi0*hallucinated_pval[oh]))[roh] <= alphai[i]
aug_rej[j] <- sum(hallucinated_R, na.rm = TRUE)
}
Rplus[i] = max(aug_rej)
#update alphai
if(i < n_batch) {
gammasum <- sum(gammai[seq_len(i+1)]) * alpha
Rrsum[1:i] = sum(Rsum)-Rsum[1:i]
alphai[i+1] <- (gammasum - sum(k[1:i]*alphai[1:i]*(Rplus[1:i]/(Rplus[1:i] + Rrsum[1:i])))) *
((nt[i+1] + sum(Rsum))/nt[i+1])
}
}
out <- d
out$R <- as.numeric(R)
out$alphai <- rep(alphai, nt)
out
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.