knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width=8, fig.height=8 )
library(MSstatsPTM)
This Vignette provides an example workflow for how to use the package MSstatsPTM for a labelfree dataset. It also provides examples and an analysis of how adjusting for global protein levels allows for better interpretations of PTM modeling results.
To install this package, start R (version "4.0") and enter:
``` {r, eval = FALSE} if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager")
BiocManager::install("MSstatsPTM")
## 1. Workflow ### 1.1 Raw Data Format **Note: We are actively developing dedicated converters for MSstatsPTM. If you have data from a processing tool that does not have a dedicated converter in MSstatsPTM please add a github issue `https://github.com/Vitek-Lab/MSstatsPTM/issues` and we will add the converter.** The first step is to load in the raw dataset for both the PTM and Protein datasets. Each dataset can formatted using dedicated converters in `MSstatsPTM`, such as `ProgenesistoMSstatsPTMFormat`, or converters from base `MSstats` such as `SkylinetoMSstatsFormat`, `MaxQtoMSstatsFormat`, `ProgenesistoMSstatsFormat`, ect. If using converters from `MSstats` note they will need to be run both on the global protein and PTM datasets. Please note for the PTM dataset, both the protein and modification site (or peptide), must be added into the `ProteinName` column. This allows for the package to summarize to the peptide level, and avoid the off chance there are matching peptides between proteins. For an example of how this can be done please see the code below. #### 1.1.1 Raw Data Converter ```r annotation <- data.frame('Condition' = c('Control', 'Control', 'Control', 'Treatment', 'Treatment', 'Treatment'), 'BioReplicate' = c(1,2,3,4,5,6), 'Run' = c('prot_run_1', 'prot_run_2', 'prot_run_3', 'phos_run_1', 'phos_run_2', 'phos_run_3'), 'Type' = c("Protein", "Protein", "Protein", "PTM", "PTM", "PTM")) # Run MSstatsPTM converter with modified and unmodified datasets. raw.input <- ProgenesistoMSstatsPTMFormat(raw_ptm_df, annotation, raw_protein_df, fasta_path)
The output of the converter is a list with two formatted data.tables. One each for the PTM and Protein datasets.
If there is not a dedicated MSstatsPTM converter for a processing tool, base MSstats converters can be used as follows. Please note ProteinName column must be a combination of the Protein Name and sitename.
# Add site into ProteinName column raw_ptm_df$ProteinName <- paste(raw_ptm_df$ProteinName, raw_ptm_df$Site, sep = "_") # Run MSstats Converters PTM.data <- ProgenesistoMSstatsFormat(raw_ptm_df, annotation) PROTEIN.data <- ProgenesistoMSstatsFormat(raw_protein_df, annotation) # Combine into one list raw.input <- list(PTM = PTM.data, PROTEIN = PROTEIN.data)
Both of these conversion methods will output the same results.
head(raw.input$PTM) head(raw.input$PROTEIN)
After loading in the input data, the next step is to use the dataSummarizationPTM function. This provides the summarized dataset needed to model the protein/PTM abundance. The function will summarize the Protein dataset up to the protein level and will summarize the PTM dataset up to the peptide level. There are multiple options for normalization and missing value imputation. These options should be reviewed in the package documentation.
MSstatsPTM.summary <- dataSummarizationPTM(raw.input, verbose = FALSE) head(MSstatsPTM.summary$PTM$ProteinLevelData) head(MSstatsPTM.summary$PROTEIN$ProteinLevelData)
The summarize function returns a list with PTM and Protein summarization
information. Each PTM and Protein include a list of data.tables: FeatureLevelData
is a data.table of reformatted input of dataSummarizationPTM, ProteinLevelData
is
the run level summarization data.
Once summarized, MSstatsPTM provides multiple plots to analyze the experiment. Here we show the quality control boxplot. The first plot shows the modified data and the second plot shows the global protein dataset.
dataProcessPlotsPTM(MSstatsPTM.summary, type = 'QCPLOT', which.PTM = "allonly", address = FALSE)
Here we show a profile plot. Again the top plot shows the modified peptide, and the bottom shows the overall protein.
dataProcessPlotsPTM(MSstatsPTM.summary, type = 'ProfilePlot', which.Protein = "Q9Y6C9", address = FALSE)
After summarization, the summarized datasets can be modeled using the
groupComparisonPTM function. This function will model the PTM and Protein
summarized datasets, and then adjust the PTM model for changes in overall
protein abundance. The output of the function is a list containing these three
models named: PTM.Model
, PROTEIN.Model
, ADJUSTED.Model
.
# Specify contrast matrix comparison <- matrix(c(-1,0,1,0),nrow=1) row.names(comparison) <- "CCCP-Ctrl" colnames(comparison) <- c("CCCP", "Combo", "Ctrl", "USP30_OE") MSstatsPTM.model <- groupComparisonPTM(MSstatsPTM.summary, data.type = "LabelFree", contrast.matrix = comparison, verbose = FALSE) head(MSstatsPTM.model$PTM.Model) head(MSstatsPTM.model$PROTEIN.Model) head(MSstatsPTM.model$ADJUSTED.Model)
The models from the groupComparisonPTM
function can be used in the model
visualization function, groupComparisonPlotsPTM
. Here we show Volcano Plots
for the models.
``` {r volcano, message=FALSE, warning=FALSE} groupComparisonPlotsPTM(data = MSstatsPTM.model, type = "VolcanoPlot", FCcutoff= 2, logBase.pvalue = 2, address=FALSE)
### 1.3.2 Heatmap Plot Here we show a Heatmap for the models. ``` {r heatmap, message=FALSE, warning=FALSE} groupComparisonPlotsPTM(data = MSstatsPTM.model, type = "Heatmap", which.PTM = 1:30, address=FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.