suppressPackageStartupMessages(library(structToolbox))
suppressPackageStartupMessages(library(httptest))
suppressPackageStartupMessages(library(metabolomicsWorkbenchR))
httptest::start_vignette('structToolbox_example')

Introduction

Metabolomics Workbench (link) hosts a metabolomics data repository. It contains over 1000 publicly available studies including raw data, processed data and metabolite/compound information.

The repository is searchable using a REST service API. The metabolomicsWorkbenchR package makes the endpoints of this service available in R and provides functionality to search the database and import datasets and metabolite information into commonly used formats such as data frames and SummarizedExperiment objects.

In this vigenette we will use metabolomicsWorkbenchR to retrieve the uploaded peak matrix for a study. We will then use structToolbox to apply a basic workflow to analyse the data.

Installation

To install this package enter:

if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")

BiocManager::install("metabolomicsWorkbenchR")

For older versions, please refer to the appropriate Bioconductor release.

Querying the database

The API endpoints for Metabolomics Workbench are accessible using the do_query function in metabolomicsWorkBenchR.

The do_query functions takes 4 inputs: - context A valid context name (character) - input_item A valid input_item name (character) - input_value A valid input_value name (character) - output_item A valid output_item (character)

Contexts refer to the different database searches available in the API. The reader is referred to the API manual for details of each context (link). In metabolomicsWorkBenchR contexts are stored as a list, and a list of valid contexts can be obtained using the names function:

names(metabolomicsWorkbenchR::context)

input_item is specific to a context. Valid items for a context can be listed using context_inputs function:

cat('Valid inputs:\n')
context_inputs('study')
cat('\nValid outputs:\n')
context_outputs('study')

Choosing a study

First we query the database to return a list of untargeted studies. We use the "study" context in combination with a special case input item called "ignored" that is required for the "untarg_studies" output item.

US = do_query(
  context = 'study',
  input_item = 'ignored',
  input_value = 'ignored',
  output_item = 'untarg_studies'
)

head(US[,1:3])

We will pull data for study "ST000009". We can obtain summary information using the "summary" output item.

S = do_query('study','study_id','ST000010','summary')
t(S)

As there are multiple datasets per study untargeted data needs to be requested by Analysis ID. We will request DatasetExperiment format so that we can use the data directly with structToolbox.

DE = do_query(
  context = 'study',
  input_item = 'analysis_id',
  input_value = 'AN000025',
  output_item = 'untarg_DatasetExperiment'
)
DE
DE=metabolomicsWorkbenchR:::AN000025
DE=as.DatasetExperiment(DE)
DE

Workflow

Now we construct a minimal metabolomics workflow consisting of quality filtering, normalisation, imputation and scaling before applying PCA.

# model sequence
M = 
    mv_feature_filter(
      threshold = 40,
      method='across',
      factor_name='FCS') +
    mv_sample_filter(mv_threshold =40) +
    vec_norm() +
    knn_impute() +
    log_transform() + 
    mean_centre() + 
    PCA()
# apply model
M = model_apply(M,DE)

# pca scores plot
C = pca_scores_plot(factor_name=c('FCS'))
chart_plot(C,M[length(M)])

Session Info

sessionInfo()
end_vignette()


computational-metabolomics/metabolomicsWorkbenchR documentation built on July 5, 2024, 10:12 a.m.