View source: R/runDEAnalysis.R
runDEAnalysis | R Documentation |
Perform differential expression analysis on SCE object
runDEAnalysis(inSCE, method = "wilcox", ...)
runDESeq2(
inSCE,
useAssay = "counts",
useReducedDim = NULL,
index1 = NULL,
index2 = NULL,
class = NULL,
classGroup1 = NULL,
classGroup2 = NULL,
analysisName,
groupName1,
groupName2,
covariates = NULL,
fullReduced = TRUE,
onlyPos = FALSE,
log2fcThreshold = NULL,
fdrThreshold = NULL,
minGroup1MeanExp = NULL,
maxGroup2MeanExp = NULL,
minGroup1ExprPerc = NULL,
maxGroup2ExprPerc = NULL,
overwrite = FALSE,
verbose = TRUE
)
runLimmaDE(
inSCE,
useAssay = "logcounts",
useReducedDim = NULL,
index1 = NULL,
index2 = NULL,
class = NULL,
classGroup1 = NULL,
classGroup2 = NULL,
analysisName,
groupName1,
groupName2,
covariates = NULL,
onlyPos = FALSE,
log2fcThreshold = NULL,
fdrThreshold = NULL,
minGroup1MeanExp = NULL,
maxGroup2MeanExp = NULL,
minGroup1ExprPerc = NULL,
maxGroup2ExprPerc = NULL,
overwrite = FALSE,
verbose = TRUE
)
runANOVA(
inSCE,
useAssay = "logcounts",
useReducedDim = NULL,
index1 = NULL,
index2 = NULL,
class = NULL,
classGroup1 = NULL,
classGroup2 = NULL,
analysisName,
groupName1,
groupName2,
covariates = NULL,
onlyPos = FALSE,
log2fcThreshold = NULL,
fdrThreshold = NULL,
minGroup1MeanExp = NULL,
maxGroup2MeanExp = NULL,
minGroup1ExprPerc = NULL,
maxGroup2ExprPerc = NULL,
overwrite = FALSE,
verbose = TRUE
)
runMAST(
inSCE,
useAssay = "logcounts",
useReducedDim = NULL,
index1 = NULL,
index2 = NULL,
class = NULL,
classGroup1 = NULL,
classGroup2 = NULL,
analysisName,
groupName1,
groupName2,
covariates = NULL,
onlyPos = FALSE,
log2fcThreshold = NULL,
fdrThreshold = NULL,
minGroup1MeanExp = NULL,
maxGroup2MeanExp = NULL,
minGroup1ExprPerc = NULL,
maxGroup2ExprPerc = NULL,
overwrite = FALSE,
check_sanity = TRUE,
verbose = TRUE
)
runWilcox(
inSCE,
useAssay = "logcounts",
useReducedDim = NULL,
index1 = NULL,
index2 = NULL,
class = "cluster",
classGroup1 = c(1),
classGroup2 = c(2),
analysisName = "cluster1_VS_2",
groupName1 = "cluster1",
groupName2 = "cluster2",
covariates = NULL,
onlyPos = FALSE,
log2fcThreshold = NULL,
fdrThreshold = NULL,
minGroup1MeanExp = NULL,
maxGroup2MeanExp = NULL,
minGroup1ExprPerc = NULL,
maxGroup2ExprPerc = NULL,
overwrite = FALSE,
verbose = TRUE
)
inSCE |
SingleCellExperiment inherited object. |
method |
Character. Specify which method to use when using
|
... |
Arguments to pass to specific methods when using the generic
|
useAssay |
character. A string specifying which assay to use for the
DE regression. Ignored when |
useReducedDim |
character. A string specifying which reducedDim to use
for DE analysis. Will treat the dimensions as features. Default |
index1 |
Any type of indices that can subset a
SingleCellExperiment inherited object by cells. Specifies
which cells are of interests. Default |
index2 |
Any type of indices that can subset a
SingleCellExperiment inherited object by cells. specifies
the control group against those specified by |
class |
A vector/factor with |
classGroup1 |
a vector specifying which "levels" given in |
classGroup2 |
a vector specifying which "levels" given in |
analysisName |
A character scalar naming the DEG analysis.
Default |
groupName1 |
A character scalar naming the group of interests.
Default |
groupName2 |
A character scalar naming the control group.
Default |
covariates |
A character vector of additional covariates to use when
building the model. All covariates must exist in
|
fullReduced |
Logical, DESeq2 only argument. Whether to apply LRT
(Likelihood ratio test) with a 'full' model. Default |
onlyPos |
Whether to only output DEG with positive log2_FC value.
Default |
log2fcThreshold |
Only out put DEGs with the absolute values of log2FC
greater than this value. Default |
fdrThreshold |
Only out put DEGs with FDR value less than this
value. Default |
minGroup1MeanExp |
Only out put DEGs with mean expression in group1
greater then this value. Default |
maxGroup2MeanExp |
Only out put DEGs with mean expression in group2
less then this value. Default |
minGroup1ExprPerc |
Only out put DEGs expressed in greater then this
fraction of cells in group1. Default |
maxGroup2ExprPerc |
Only out put DEGs expressed in less then this
fraction of cells in group2. Default |
overwrite |
A logical scalar. Whether to overwrite result if exists.
Default |
verbose |
A logical scalar. Whether to show messages. Default
|
check_sanity |
Logical, MAST only argument. Whether to perform MAST's
sanity check to see if the counts are logged. Default |
SCTK provides Limma, MAST, DESeq2, ANOVA and Wilcoxon test for differential expression analysis, where DESeq2 expects non-negtive integer assay input while others expect logcounts.
Condition specification allows two methods:
1. Index level selection. Only use arguments index1
and index2
.
2. Annotation level selection. Only use arguments class
,
classGroup1
and classGroup2
.
The input SingleCellExperiment object, where
metadata(inSCE)$diffExp
is updated with a list named by
analysisName
, with elements of:
$groupNames |
the naming of the two conditions |
$useAssay , $useReducedDim |
the matrix name that was used for calculation |
$select |
the cell selection indices (logical) for each condition |
$result |
a |
$method |
the method used |
See plotDEGHeatmap
, plotDEGRegression
,
plotDEGViolin
and plotDEGVolcano
for
visualization method after running DE analysis.
data(scExample, package = "singleCellTK")
sce <- subsetSCECols(sce, colData = "type != 'EmptyDroplet'")
sce <- scaterlogNormCounts(sce, assayName = "logcounts")
sce <- runDEAnalysis(method = "Limma", inSCE = sce, groupName1 = "group1",
groupName2 = "group2", index1 = seq(20), index2 = seq(21,40),
analysisName = "Limma")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.