require(singleCellTK) require(celda) require(knitr) require(gridExtra) require(ggplot2) require(dplyr) library(kableExtra) sce <- params$sce analysisName <- params$analysisName pdf <- params$pdf showSession <- params$showSession dev <- ifelse(isTRUE(pdf), c("png"), c("png", "pdf")) knitr::opts_chunk$set( echo = TRUE, cache = FALSE, cache.lazy = FALSE, # don't do lazy-loading for big objects cache.comments = FALSE, fig.align = "center", fig.keep = "all", dev = dev ) table <- getDiffAbundanceResults(sce, analysisName)
This report will visualize results from the diffAbundanceFET
function, which calculates the cell counting and fraction by dividing all cells to groups specified by the arguments, together with statistical summary by performing Fisher Exact Tests (FET). The differential abundance analysis presented here is r params$analysisName
.
table <- table %>% mutate_if(is.numeric, round, digits = 4) kable(table, style = 'html', row.names = F) %>% kable_styling(bootstrap_options = "striped") %>% scroll_box(width = "100%", height = "800px")
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.