#' DMRScan: An R-package for identification of Differentially Metylated Regions
#' @author Christian Page, \email{page.ntnu@gmail.com}
#' @references Not Published yet (Under revision)
#' @aliases DMRScan_package
#' @keywords DMR, DMRScan
#' @docType package
#' @name DMRScan_package
#' @param observations An object of type GRangesList from makeCpGregions
#' @param windowSize A sequence of windowSizes for the slidingWindow,
#' must be an integer
#' @param windowThreshold Optional argument with corresponding cut-off for
#' each window. Will be estimated if not supplied.
#' @param ... Optional arguments to be pased to \code{\link{estimateThreshold}},
#' if no grid is specified.
#' @return An object of type \code{\link{GRanges}} with signficantly differentially
# methylated regions
#' @examples
#' ## nProbeoad methylation data from chromosome 22
#' data(DMRScan.methylationData)
#' ## nProbeoad phenotype (end-point for methylation data)
#' data(DMRScan.phenotypes)
#'
#' ## Test for an association between phenotype and Methylation
#' test.statistics <- apply(DMRScan.methylationData,1,function(x,y)
#' summary(glm(y ~ x, family = binomial(link = "logit")))$coefficients[2,3],
#' y = DMRScan.phenotypes)
#' ## Set chromosomal position to each test-statistic
#' positions <- data.frame(matrix(as.integer(unlist(strsplit(names(test.statistics), split="chr|[.]"))), ncol = 3, byrow = TRUE))[,-1]
#' ## Set clustering features
#' min.cpg <- 4 ## Minimum number of CpGs in a tested cluster
#' ## Maxium distance (in base-pairs) within a cluster
#' ## before it is broken up into two seperate cluster
#' max.gap <- 750
#'
#
#' ## Identify all clusters, and generate a list for each cluster
#' regions <- makeCpGregions(observations = test.statistics,
#' chr = positions[,1], pos = positions[,2],
#' maxGap = max.gap, minCpG = min.cpg)
#' ## Number of CpGs in the slidingWindows, can be either a single number
#' ## or a sequence of windowSizes
#' windowSizes <- 3:7
#' nCpG <- sum(sapply(regions, length)) ## Number of CpGs to be tested
#'
#' # Estimate the windowThreshold, based on the number of CpGs and windowSizes
#' windowThresholds <- estimateWindowThreshold(nProbe = nCpG,
#' windowSize = windowSizes, method = "sampling", mcmc = 10000)
#' ## Run the slidingWindow
#' DMRScanResults <- dmrscan(observations = regions,
#' windowSize = windowSizes,
#' windowThreshold = windowThresholds)
#' ## Print the result
#' print(DMRScanResults)
NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.