library(BiocStyle) knitr::opts_chunk$set(error=FALSE, message=FALSE, warning=FALSE)
First, we download the data from Zonendo.
library(BiocFileCache) bfc <- BiocFileCache("raw_data", ask=FALSE) data.url <- "http://lincs.hms.harvard.edu/data/HMS_Dataset_20267.zip" data.path <- bfcrpath(bfc, data.url)
Now read it into our session.
library(tidyverse) temp <- file.path("temp/") dir.create(temp, recursive = TRUE) unzip(data.path, exdir=temp) csv_file <- file.path(temp, "HMS_Dataset_20267", "HMS_Dataset_20267_data_file.csv") data <- read_csv(csv_file)
Now, we want to clean the data up a bit.
data <- data %>% dplyr::rename(x="X", y="Y", shape_area="Area", shape_perimiter="Perim", shape_circularity="Circ", cellID="Cell_No", imageID="Image_link") %>% select(-Well, -Treatment, -Dose, -`Dose unit`, -`Duration (hr)`, -Row, -Column, -Field) intensity_columns <- colnames(data)[grep("[A-Za-z]+[0-9]*_[0-9]+|IntDen_DAPI", colnames(data))] # Rename the intensity columns (for easier processing in Segmented cells) data <- data %>% rename_at(intensity_columns, function(x){paste0("intensity_", x)})
ExperimentHub
StoragePrepare all the files for storage on the ExperimentHub
.
path <- file.path("scSpatial", "Hafner-BreastCancer", "1.0") dir.create(path, showWarnings=FALSE, recursive=TRUE) saveRDS(data, file=file.path(path, "spatialCellData.rds"))
And get rid of the temporary folder and the cache.
unlink(temp, recursive = TRUE, force = TRUE) unlink("raw_data", recursive = TRUE, force = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.