# FULL log marginal likelihood of a models
FULLmLL <- function(Phi,D1,D0,control,verbose=FALSE) {
Phi <- Phi[colnames(D1),colnames(D1)]
if(control$selEGenes.method == "regularization"){
Phi2 = cbind(Phi, double(ncol(Phi)))
colnames(Phi2)[ncol(Phi2)] = "null"
}
else
Phi2 = Phi
if (!all(diag(Phi2)==1)) diag(Phi2) = 1
# compute score
a0 <- control$hyperpara[1]
b0 <- control$hyperpara[2]
a1 <- control$hyperpara[3]
b1 <- control$hyperpara[4]
n01 <- D1 %*% (1-Phi2)
n00 <- D0 %*% (1-Phi2)
n11 <- D1 %*% Phi2
n10 <- D0 %*% Phi2
s0 <- gamma(a0+b0)*gamma(n10+a0)*gamma(n00+b0)/gamma(a0)/gamma(b0)/gamma(n10+n00+a0+b0)
s1 <- gamma(a1+b1)*gamma(n11+a1)*gamma(n01+b1)/gamma(a1)/gamma(b1)/gamma(n11+n01+a1+b1)
SP <- s0*s1*control$Pe
LLperGene = log(rowSums(SP))
s <- sum(LLperGene)
# posterior effect positions
ep <- SP/rowSums(SP)
# MAP estimate of effect positions
Theta = apply(ep,1,function(e) e ==max(e))
map = apply(Theta,1,which)
if(!is.null(control$Pm)){
if(control$lambda != 0){
if(verbose) cat("--> Using regularization to incorporate prior knowledge\n")
s <- s - control$lambda*sum(abs(Phi - control$Pm)) + ncol(Phi)^2*log(control$lambda*0.5)
}
else{
if(verbose) cat("--> Using Bayesian model averaging to incorporate prior knowledge\n")
s = s + PhiDistr(Phi, control$Pm)
}
}
return(list(mLL=s,pos=ep,mappos=map,LLperGene=LLperGene, para=NULL))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.