tests/testthat/test-celda_G.R

# # celda_G
# library(celda)
# context("Testing celda_G")
#
# celdaGSim <- simulateCells("celda_G", L = 5, G = 100)
# modelG <- celda_G(counts = celdaGSim$counts,
#         L = celdaGSim$L,
#         verbose = FALSE)
# factorized <- factorizeMatrix(counts = celdaGSim$counts, celdaMod = modelG)
#
# test_that(desc = "Testing celda_G model with numeric input matrix", {
#     # Github Issue #347
#     numericCounts <- celdaGSim$counts
#     storage.mode(numericCounts) <- "numeric"
#     expect_true(is(celda_G(counts = numericCounts,
#         L = celdaGSim$L,
#         maxIter = 1,
#         verbose = FALSE),
#         "celda_G"))
# })
#
# test_that(desc = "Testing clusterProbability with celda_G", {
#     expect_true(ncol(clusterProbability(celdaGSim$counts,
#         modelG)$yProbability) == celdaGSim$L)
# })
#
# test_that(desc = paste0("Testing simulateCells.celda_G error checking with",
#     " low gamma"), {
#     expect_error(simulateCells(model = "celda_G", gamma = 0.000001))
# })
#
# test_that(desc = paste0("Testing simulateCells.celda_G, make sure all genes",
#     " expressed"), {
#         simCellsLow <- simulateCells(model = "celda_G",
#             G = 1000,
#             C = 300,
#             NRange = c(1, 10))
#         expect_true(all(rowSums(simCellsLow$counts) > 0))
#     })
#
# # test_that(desc = "Testing LogLikelihood functions", {
# #     expect_true(all(is.numeric(logLikelihoodHistory(celdaMod = modelG))))
# #     expect_equal(max(logLikelihoodHistory(celdaMod = modelG)),
# #         bestLogLikelihood(modelG))
# # })
#
# # test_that(desc = "Testing celdaGridSearch with celda_G", {
# #     celdaGRes <- celdaGridSearch(counts = celdaGSim$counts,
# #         model = "celda_G",
# #         nchains = 2,
# #         paramsTest = list(L = c(5, 10)),
# #         maxIter = 1,
# #         verbose = FALSE,
# #         bestOnly = FALSE,
# #         perplexity = FALSE)
# #
# #     expect_error(celdaGridSearch(counts = celdaGSim$counts,
# #         model = "celda_G",
# #         paramsTest = list(L = 10, M = 4),
# #         bestOnly = FALSE),
# #         paste0("The following elements in 'paramsTest' are not",
# #         " arguments of 'celda_G': M"))
# #
# #     expect_error(celdaGridSearch(counts = celdaGSim$counts,
# #         model = "celda_G",
# #         nchains = 1,
# #         paramsTest = list(L = c(4, 5), yInit = 10)),
# #         paste0("Setting parameters such as 'z.init', 'yInit', and",
# #             " 'sample.label' in 'paramsTest' is not currently supported."))
# #
# #     expect_error(celdaGridSearch(counts = celdaGSim$counts,
# #         model = "celda_G",
# #         nchains = 1,
# #         paramsTest = list()),
# #         paste0("The following arguments are not in 'paramsTest' or",
# #             " 'paramsFixed' but are required for 'celda_G': L"))
# #
# #     expect_error(celdaGridSearch(counts = celdaGSim$counts,
# #         model = "celda_G",
# #         nchains = 1,
# #         paramsTest = list(L = 10),
# #         paramsFixed = list(xxx = "xxx")),
# #         paste0("The following elements in 'paramsFixed' are not arguments",
# #             " of 'celda_G': xxx"))
# #
# #     expect_warning(celdaGridSearch(counts = celdaGSim$counts,
# #         model = "celda_G",
# #         paramsTest = list(L = c(5, 6), nchains = 2)),
# #         paste0("Parameter 'nchains' should not be used within the",
# #             " paramsTest list"))
# #
# #     expect_true(is(celdaGRes, "celdaList"))
# #     expect_error(plotGridSearchPerplexity(celdaGRes))
# #     expect_equal(names(runParams(celdaGRes)),
# #         c("index", "chain", "L", "log_likelihood"))
# #
# #     celdaGRes <- resamplePerplexity(celdaGSim$counts, celdaGRes,
# #     numResample = 2)
# #     expect_equal(is.null(celdaGRes@perplexity), FALSE)
# #     expect_is(celdaGRes, "celdaList")
# #     expect_error(resamplePerplexity(celdaGSim$counts,
# #         celdaGRes, numResample = "2"))
# #     expect_error(resamplePerplexity(celdaGSim$counts,
# #         "celdaGRes", numResample = 2))
# #
# #     plotObj <- plotGridSearchPerplexity(celdaGRes)
# #     expect_is(plotObj, "ggplot")
# #
# #     celdaCRes <- celdaGridSearch(counts = celdaGSim$counts,
# #         model = "celda_C",
# #         nchains = 2,
# #         paramsTest = list(K = c(5, 10)),
# #         maxIter = 1,
# #         verbose = FALSE,
# #         bestOnly = TRUE)
# #     expect_error(plotGridSearchPerplexity.celda_G(celdaCRes))
# #
# #     celdaGResIndex1 <- subsetCeldaList(celdaGRes, params = list(index = 1))
# #     expect_true(all(is(celdaGResIndex1, "celda_G") &&
# #             !is(celdaGResIndex1, "celdaList")))
# #
# #     expect_error(subsetCeldaList(celdaGRes, params = list(L = 11)))
# #     expect_error(subsetCeldaList(celdaGRes, params = list(L = 5, M = 10)))
# #
# #     celdaGResL5 <- subsetCeldaList(celdaGRes, params = list(L = 5))
# #     modelG <- selectBestModel(celdaGResL5)
# #     res <- perplexity(celdaGSim$counts, modelG)
# #     res2 <- perplexity(celdaGSim$counts,
# #         modelG, newCounts = celdaGSim$counts + 1)
# #
# #     expect_error(res <- perplexity(celdaGSim$counts, modelG,
# #         newCounts = celdaGSim$counts[-1, ]))
# # })
#
# # logLikelihood
# test_that(desc = "Testing logLikelihood.celda_G", {
#     expect_lt(logLikelihood(model = "celda_G",
#         counts = celdaGSim$counts,
#         y = celdaGSim$y,
#         L = celdaGSim$L,
#         delta = 1,
#         gamma = 1,
#         beta = 1),
#         0)
#
#     fakeY <- celdaGSim$y
#     fakeY[1] <- celdaGSim$L + 1
#     expect_error(logLikelihood(model = "celda_G",
#         counts = celdaGSim$counts,
#         y = fakeY,
#         L = celdaGSim$L,
#         delta = 1,
#         gamma = 1,
#         beta = 1),
#         "An entry in y contains a value greater than the provided L.")
# })
#
# # normalizeCounts
# test_that(desc = paste0("Making sure normalizeCounts doesn't change",
#     " dimensions of counts matrix"), {
#         normCounts <- normalizeCounts(celdaGSim$counts)
#         expect_equal(dim(normCounts), dim(celdaGSim$counts))
#         expect_equal(rownames(normCounts), rownames(celdaGSim$counts))
#         expect_equal(colnames(normCounts), colnames(celdaGSim$counts))
#         expect_error(normalizeCounts(celdaGSim$counts,
#             transformationFun = "scale"),
#             "'transformationFun' needs to be of class 'function'")
#         expect_error(normalizeCounts(celdaGSim$counts, scaleFun = "scale"),
#             "'scaleFun' needs to be of class 'function'")
#     })
#
# # recodeClusterY
# test_that(desc = "Testing recodeClusterY with celda_G", {
#     expect_error(recodeClusterZ(celdaMod = modelG,
#         from = c(1, 2, 3, 4, 5),
#         to = c(5, 4, 3, 2, 1)))
#     expect_error(recodeClusterY(celdaMod = modelG,
#         from = NULL,
#         to = ""))
#     expect_error(recodeClusterY(celdaMod = modelG,
#         from = c(1, 2, 3, 4, 5),
#         to = c(1, 2, 3, 4, 6)))
#     expect_error(recodeClusterY(celdaMod = modelG,
#         from = c(1, 2, 3, 4, 6),
#         to = c(1, 2, 3, 4, 5)))
#     newRecoded <- recodeClusterY(celdaMod = modelG,
#         from = c(1, 2, 3, 4, 5),
#         to = c(5, 4, 3, 2, 1))
#     expect_equal(modelG@clusters$y == 1, newRecoded@clusters$y == 5)
# })
#
# # compareCountMatrix
# test_that(desc = "Testing CompareCountMatrix with celda_G", {
#     expect_true(compareCountMatrix(counts = celdaGSim$counts,
#         celdaMod = modelG))
#     lessFeatures <- celdaGSim$counts[1:50, ]
#     expect_error(compareCountMatrix(counts = lessFeatures, celdaMod = modelG),
#         paste0("The provided celda object was generated from a counts matrix",
#             " with a different number of features than the one provided."))
#
#     countsMatrixError <- matrix(data = 1,
#         nrow = nrow(celdaGSim$counts),
#         ncol = ncol(celdaGSim$counts))
#     expect_false(compareCountMatrix(counts = countsMatrixError,
#         celdaMod = modelG,
#         errorOnMismatch = FALSE))
#     expect_error(compareCountMatrix(counts = countsMatrixError,
#         celdaMod = modelG,
#         errorOnMismatch = TRUE))
# })
#
# # topRank
# test_that(desc = "Testing topRank function with celda_G", {
#     topRank <- topRank(matrix = factorized$proportions$module,
#         n = 1000,
#         threshold = NULL)
#     expect_equal(names(topRank),
#         c("index", "names"))
#     expect_equal(names(topRank(matrix = factorized$proportions$module)),
#         c("index", "names"))
# })
#
# # plotHeatmap
# test_that(desc = "Testing plotHeatmap with celda_G", {
#     expect_error(plotHeatmap(counts = celdaGSim$counts, y = modelG@params$L),
#         "Length of y must match number of rows in counts matrix")
#     expect_error(plotHeatmap(counts = celdaGSim$counts,
#         y = modelG@clusters$y,
#         scaleRow = "scale"),
#         "'scaleRow' needs to be of class 'function'")
#     expect_error(plotHeatmap(counts = celdaGSim$counts,
#         y = modelG@clusters$y,
#         trim = 3),
#         paste0("'trim' should be a 2 element vector specifying the lower",
#             " and upper boundaries"))
# })
#
# # test_that(desc = "Testing plotHeatmap with celda_G, including annotations",
# #     {
# #     annot <- as.data.frame(c(rep(x = 1,
# #         times = nrow(celdaGSim$counts) - 100), rep(x = 2, 100)))
# #     rownames(annot) <- rownames(celdaGSim$counts)
# #     colnames(annot) <- "label"
# #
# #     expect_equal(names(plotHeatmap(celdaMod = modelG,
# #         counts = celdaGSim$counts,
# #         annotationFeature = annot,
# #         y = modelG@clusters$y)),
# #         c("treeRow", "treeCol", "gtable"))
# #
# #     rownames(annot) <- NULL
# #     expect_equal(names(plotHeatmap(celdaMod = modelG,
# #         counts = celdaGSim$counts,
# #         annotationFeature = as.matrix(annot),
# #         y = modelG@clusters$y)),
# #         c("treeRow", "treeCol", "gtable"))
# #
# #     rownames(annot) <- rev(rownames(celdaGSim$counts))
# #     expect_error(plotHeatmap(celdaMod = modelG,
# #         counts = celdaGSim$counts,
# #         annotationFeature = annot,
# #         y = modelG@clusters$y),
# #         paste0("Row names of 'annotationFeature' are different than",
# #         " the row names of 'counts'"))
# # })
#
# # celdaHeatmap
# test_that(desc = "Testing celdaHeatmap with celda_G", {
#     expect_equal(names(celdaHeatmap(celdaMod = modelG,
#         counts = celdaGSim$counts)),
#         c("treeRow", "treeCol", "gtable"))
# })
#
# # moduleHeatmap
# test_that(desc = "Testing moduleHeatmap with celda_G", {
#     expect_equal(names(moduleHeatmap(celdaGSim$counts,
#         celdaMod = modelG,
#         topCells = 300,
#         featureModule = c(1, 2))),
#         c("treeRow", "treeCol", "gtable"))
#     expect_equal(names(moduleHeatmap(celdaGSim$counts,
#         celdaMod = modelG,
#         topFeatures = 15,
#         topCells = 15,
#         normalizedCounts = NA)),
#         c("treeRow", "treeCol", "gtable"))
#
#     expect_error(moduleHeatmap("counts", celdaMod = modelG),
#         "'counts' should be a numeric count matrix")
#     expect_error(moduleHeatmap(celdaGSim$counts, celdaMod = "modelG"),
#         "'celdaMod' should be an object of class celda_G or celda_CG")
# })
#
# # plotDimReduceModule
# test_that(desc = "Testing plotDimReduceModule with celda_G", {
#     celdaTsne <- celdaTsne(counts = celdaGSim$counts,
#         maxIter = 50,
#         celdaMod = modelG)
#     expect_equal(names(plotDimReduceModule(
#         dim1 = celdaTsne[, 1],
#         dim2 = celdaTsne[, 2],
#         counts = celdaGSim$counts,
#         celdaMod = modelG)),
#         c("data",
#             "layers",
#             "scales",
#             "mapping",
#             "theme",
#             "coordinates",
#             "facet",
#             "plot_env",
#             "labels"))
#     expect_equal(names(plotDimReduceModule(dim1 = celdaTsne[, 1],
#         dim2 = celdaTsne[, 2],
#         counts = celdaGSim$counts,
#         celdaMod = modelG,
#         modules = c(1, 2),
#         rescale = FALSE)),
#         c("data",
#             "layers",
#             "scales",
#             "mapping",
#             "theme",
#             "coordinates",
#             "facet",
#             "plot_env",
#             "labels"))
#     expect_error(plotDimReduceModule(dim1 = celdaTsne[, 1],
#         dim2 = celdaTsne[, 2],
#         counts = celdaGSim$counts,
#         celdaMod = modelG,
#         modules = c(11, 12)))
# })
#
# # celdaTsne
# test_that(desc = paste0("Testing celdaTsne with celda_G when model class is",
#     " changed, should error"), {
#         modelX <- modelG
#         class(modelX) <- "celda_X"
#         expect_error(celdaTsne(counts = celdaGSim$counts, celdaMod = modelX),
#             "unable to find")
#     })
#
# # test_that(desc = "Testing celdaTsne with celda_C including all cells", {
# #     tsne <- celdaTsne(counts = celdaGSim$counts,
# #         celdaMod = modelG,
# #         maxCells = ncol(celdaGSim$counts))
# #     plotObj <- plotDimReduceCluster(tsne[, 1],
# #         tsne[, 2], rep(1, ncol(celdaGSim$counts)))
# #     expect_true(ncol(tsne) == 2 & nrow(tsne) == ncol(celdaGSim$counts))
# #     expect_true(!is.null(plotObj))
# #
# #     tsne <- celdaTsne(counts = celdaGSim$counts,
# #         celdaMod = modelG,
# #         maxCells = ncol(celdaGSim$counts),
# #         modules = c(1, 2))
# #     expect_error(tsne <- celdaTsne(counts = celdaGSim$counts,
# #         celdaMod = modelG,
# #         maxCells = ncol(celdaGSim$counts),
# #         modules = seq(1000, 1005)))
# # })
#
# test_that(desc = paste0("Testing celdaTsne with celda_G including",
#     " a subset of cells"), {
#     tsne <- celdaTsne(counts = celdaGSim$counts,
#         celdaMod = modelG,
#         maxCells = 100)
#     plotObj <- plotDimReduceCluster(tsne[, 1],
#         tsne[, 2], rep(1, ncol(celdaGSim$counts)))
#     expect_true(ncol(tsne) == 2 & nrow(tsne) == ncol(celdaGSim$counts) &&
#             sum(!is.na(tsne[, 1])) == 100)
#     expect_true(!is.null(plotObj))
# })
#
# # celdaUmap
# test_that(desc = paste0("Testing celdaUmap with celda_G when model class is",
#     " changed, should error"), {
#         modelX <- modelG
#         class(modelX) <- "celda_X"
#         expect_error(celdaUmap(counts = celdaGSim$counts, celdaMod = modelX),
#             "unable to find")
#     })
#
# test_that(desc = "Testing celdaUmap with celda_C including all cells", {
#     umap <- celdaUmap(counts = celdaGSim$counts,
#         celdaMod = modelG,
#         maxCells = ncol(celdaGSim$counts))
#     plotObj <- plotDimReduceCluster(umap[, 1],
#         umap[, 2], rep(1, ncol(celdaGSim$counts)))
#     expect_true(ncol(umap) == 2 & nrow(umap) == ncol(celdaGSim$counts))
#     expect_true(!is.null(plotObj))
#
#     umap <- celdaUmap(counts = celdaGSim$counts,
#         celdaMod = modelG,
#         maxCells = ncol(celdaGSim$counts),
#         modules = c(1, 2))
#     expect_error(umap <- celdaUmap(counts = celdaGSim$counts,
#         celdaMod = modelG,
#         maxCells = ncol(celdaGSim$counts),
#         modules = seq(1000, 1005)))
# })
#
# test_that(desc = paste0("Testing celdaUmap with celda_G including",
#     " a subset of cells"), {
#     umap <- celdaUmap(counts = celdaGSim$counts,
#         celdaMod = modelG,
#         maxCells = 100)
#     plotObj <- plotDimReduceCluster(umap[, 1],
#         umap[, 2], rep(1, ncol(celdaGSim$counts)))
#     expect_true(ncol(umap) == 2 & nrow(umap) == ncol(celdaGSim$counts) &&
#             sum(!is.na(umap[, 1])) == 100)
#     expect_true(!is.null(plotObj))
# })
#
# # featureModuleLookup
# test_that(desc = "Testing featureModuleLookup with celda_G", {
#     res <- featureModuleLookup(celdaGSim$counts, modelG, "Gene_1")
#     expect_true(res == modelG@clusters$y[1])
#     res <- featureModuleLookup(celdaGSim$counts,
#         modelG, "Gene_2", exactMatch = FALSE)
#     expect_true(length(res) == 11)
#     res <- featureModuleLookup(celdaGSim$counts, modelG, "XXXXXXX")
#     expect_true(grepl("No feature", res))
# })
#
# # .cGSplitY
# test_that(desc = "Testing error checking for .cGSplitY", {
#     r <- simulateCells("celda_G",
#         C = 100,
#         G = 100,
#         L = 2)
#     dc <- .cGDecomposeCounts(r$counts, r$y, r$L)
#     res <- .cGSplitY(r$counts,
#         r$y,
#         dc$nTSByC,
#         dc$nByTS,
#         dc$nByG,
#         dc$nGByTS,
#         dc$nM,
#         dc$nG,
#         r$L,
#         beta = 1,
#         delta = 1,
#         gamma = 1,
#         yProb = NULL,
#         minFeature = 1000)
#     expect_true(grepl("Cluster sizes too small", res$message))
# })
#
# test_that(desc = "Testing perplexity.celda_G", {
#     expect_true(is.numeric(perplexity(celdaGSim$counts, modelG)))
#     class(modelG) <- c("celda_C")
#     expect_error(perplexity.celda_G(celdaGSim$counts, modelG),
#         "could not find function \"perplexity.celda_G\"")
# })
campbio/celda documentation built on April 5, 2024, 11:47 a.m.