#' The simATACCount class
#'
#' S4 class that holds parameters for the count matrix of simATAC simulation.
#'
#' @section Parameters:
#'
#' simATAC simulation parameters:
#'
#' \describe{
#' \item{\code{nBins}}{The bin number to simulate.}
#' \item{\code{nCells}}{The cell number to simulate.}
#' \item{\code{[seed]}}{Seed to use for generating random numbers.}
#' \item{\code{[default]}}{The logical variable whether to use default parameters
#' (TRUE) or learn from data (FALSE)}
#' \item{\code{[species]}}{An string indicating the species of the input cells.
#' simATAC supports "hg38", "hg19", "mm9", and "mm10" in the current version.}
#' \item{\code{[bin.coordinate.file]}}{The address of the file containing bins' coordinates
#' including three columns in the format of "chr start end". The file must have a header of
#' "chr start end" at the first line. If your data does not match the genome coordinates
#' provided by simATAC, and you do not have the file containing bin information, use the "None"
#' value.}
#' \item{\emph{Library size parameters}}{
#' \describe{
#' \item{\code{lib.mean1}}{Mean parameter for the first component of library
#' size bimodal Gaussian distribution.}
#' \item{\code{lib.mean2}}{Mean parameter for the second component of library
#' size bimodal Gaussian distribution}
#' \item{\code{lib.sd1}}{Standard deviation parameter for the first component
#' of library size bimodal Gaussian distribution.}
#' \item{\code{lib.sd2}}{Standard deviation parameter for the second component
#' of library size bimodal Gaussian distribution.}
#' \item{\code{lib.prob}}{Probability parameter for the first component in bimodal
#' Gaussian distribution. The probability for the second component is 1-lib.prob.}
#' }
#' }
#' \item{\emph{Non-zero cell proportion parameters}}{
#' \describe{
#' \item{\code{non.zero.pro}}{The proportion of non-zero cells per bin in the
#' original count matrix}
#' \item{\code{mean.coef0}}{Estimated coefficient of power zero variable in the
#' polynomial function}
#' \item{\code{mean.coef1}}{Estimated coefficient of power one variable in the
#' polynomial function}
#' \item{\code{mean.coef2}}{Estimated coefficient of power two variable in the
#' polynomial function}
#' }
#' }
#' \item{\emph{[noise]}}{
#' \describe{
#' \item{\code{[noise.mean]}}{Gaussian mean to be added as noise to the final
#' simulated counts}
#' \item{\code{[noise.sd]}}{Gaussian standard deviation to be added as noise to
#' the final simulated counts}
#' }
#' }
#' \item{\code{sparse.fac}}{Sparsit factor to be multiplied to the input of Poisson
#' distribution on the final simulated count matrix}
#' }
#'
#' The parameters not shown in brackets can be estimated from real data using
#' \code{\link{simATACEstimate}}. For details of the simATAC simulation see \code{\link{simATACSimulate}}.
#'
#' @name simATACCount
#' @rdname simATACCount
#' @exportClass simATACCount
#' @aliases simATACCount-class
setClass("simATACCount",
slots = c(nBins = "numeric",
nCells = "numeric",
seed = "numeric",
default = "logical",
species = "character",
bin.coordinate.file = "character",
lib.mean1 = "numeric",
lib.mean2 = "numeric",
lib.sd1 = "numeric",
lib.sd2 = "numeric",
lib.prob = "numeric",
non.zero.pro = "numeric",
mean.coef0 = "numeric",
mean.coef1 = "numeric",
mean.coef2 = "numeric",
noise.mean = "numeric",
noise.sd = "numeric",
sparse.fac = "numeric"),
prototype = prototype(nBins = 642098,
nCells = 500,
seed = sample(seq_len(1e5), 1),
default = TRUE,
species = "hg38",
bin.coordinate.file = "None",
lib.mean1 = 13.60503,
lib.mean2 = 14.93826,
lib.sd1 = 1.745264,
lib.sd2 = 1.009923,
lib.prob = 0.5257138,
non.zero.pro = 1,
mean.coef0 = 0.002822035,
mean.coef1 = 0.6218985,
mean.coef2 = 1.976122,
noise.mean = 0,
noise.sd = 0,
sparse.fac = 1))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.