library(SPONGE)
context("TEST assigning ceRNA interactions to partitions correctly")
test_that("test if cor_cut and df_cut are selecte appropriately",{
set.seed(12345)
partitions <- determine_cutoffs_for_null_model_partitioning(
ks = seq(0.2, 0.90, 0.1), #gene-gene correlation
m_max = 8, #number of miRNAs
sponge_result = ceRNA_interactions)
#expect that correlations are in a +-0.05 window around their cor_cut
expect_false(any(abs(as.numeric(as.character(partitions$cor_cut)) -
partitions$cor) > 0.1))
partitions_df_up_to_8 <- partitions[df < 9]
partitions_df_more_than_8 <- partitions[df > 8]
#expect that up to a df of 8, df_cut corresponds to df
expect_equal(as.numeric(as.character(partitions_df_up_to_8$df_cut)),
partitions_df_up_to_8$df)
#for larger df use the model for df = 8
expect_false(any(as.numeric(as.character(partitions_df_more_than_8$df_cut)) >
partitions_df_more_than_8$df))
})
test_that("test if cor_cut and df_cut are selecte appropriately with large m",{
set.seed(12345)
partitions <- determine_cutoffs_for_null_model_partitioning(
ks = seq(0.2, 0.90, 0.1), #gene-gene correlation
m_max = 15, #number of miRNAs
sponge_result = ceRNA_interactions)
#expect that correlations are in a +-0.05 window around their cor_cut
expect_false(any(abs(as.numeric(as.character(partitions$cor_cut)) -
partitions$cor) > 0.1))
partitions_df_up_to_8 <- partitions[df < 9]
partitions_df_more_than_8 <- partitions[df > 8]
#expect that up to a df of 8, df_cut corresponds to df
expect_equal(as.numeric(as.character(partitions_df_up_to_8$df_cut)),
partitions_df_up_to_8$df)
#for larger df use the model for df = 8
expect_false(any(as.numeric(as.character(partitions_df_more_than_8$df_cut)) >
partitions_df_more_than_8$df))
})
test_that("test if cor_cut and df_cut are selecte appropriately with custom k",{
set.seed(12345)
partitions <- determine_cutoffs_for_null_model_partitioning(
ks = c(0.2, 0.5, 0.7), #gene-gene correlation
m_max = 8, #number of miRNAs
sponge_result = ceRNA_interactions)
#expect that correlations are in a +-0.05 window around their cor_cut
expect_false(any(abs(as.numeric(as.character(partitions$cor_cut)) -
partitions$cor) > 0.15))
partitions_df_up_to_8 <- partitions[df < 9]
partitions_df_more_than_8 <- partitions[df > 8]
#expect that up to a df of 8, df_cut corresponds to df
expect_equal(as.numeric(as.character(partitions_df_up_to_8$df_cut)),
partitions_df_up_to_8$df)
#for larger df use the model for df = 8
expect_false(any(as.numeric(as.character(partitions_df_more_than_8$df_cut)) >
partitions_df_more_than_8$df))
})
test_that("test if computing cor_cut and df_cut fails with k = 0",{
set.seed(12345)
expect_error(partitions <- determine_cutoffs_for_null_model_partitioning(
ks = seq(0, 0.90, 0.1), #gene-gene correlation
m_max = 15, #number of miRNAs
sponge_result = ceRNA_interactions))
})
test_that("test if computing cor_cut and df_cut fails with k = 1",{
set.seed(12345)
expect_error(partitions <- determine_cutoffs_for_null_model_partitioning(
ks = seq(0.1, 1, 0.1), #gene-gene correlation
m_max = 15, #number of miRNAs
sponge_result = ceRNA_interactions))
})
test_that("test if computing cor_cut and df_cut fails with k = NA",{
set.seed(12345)
expect_error(partitions <- determine_cutoffs_for_null_model_partitioning(
ks = NA, #gene-gene correlation
m_max = 15, #number of miRNAs
sponge_result = ceRNA_interactions))
})
test_that("test if computing cor_cut and df_cut fails with m = NA",{
set.seed(12345)
expect_error(partitions <- determine_cutoffs_for_null_model_partitioning(
ks = c(0.3, 0.5, 0.7), #gene-gene correlation
m_max = NA, #number of miRNAs
sponge_result = ceRNA_interactions))
})
test_that("test if computing cor_cut and df_cut fails with k = NULL",{
set.seed(12345)
expect_error(partitions <- determine_cutoffs_for_null_model_partitioning(
ks = NULL, #gene-gene correlation
m_max = 15, #number of miRNAs
sponge_result = ceRNA_interactions))
})
test_that("test if computing cor_cut and df_cut fails with m = NULL",{
set.seed(12345)
expect_error(partitions <- determine_cutoffs_for_null_model_partitioning(
ks = c(0.3, 0.5, 0.7), #gene-gene correlation
m_max = NULL, #number of miRNAs
sponge_result = ceRNA_interactions))
})
test_that("test if computing cor_cut and df_cut fails with missing columns",{
set.seed(12345)
expect_error(partitions <- determine_cutoffs_for_null_model_partitioning(
ks = c(0.3, 0.5, 0.7), #gene-gene correlation
m_max = NULL, #number of miRNAs
sponge_result = data.frame(mscor = rnorm(5))))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.