#' To calculate the correlation between the predictor centroid and the validation centroid.
#'
#' @param pre.dat a eSet object or eSet-like matrix with features in rows and samples in columns
#' @param model a list containing CrossICC result
#' @return a list contains a vecter that store the predict clusters and a normalized expression matrix
#' @export
#'
#' @examples
#' data("demo.platforms")
#' CrossICC.object <- CrossICC(demo.platforms, skip.mfs = TRUE, max.iter = 1, overwrite = TRUE, output.dir = tempdir())
#' predicted <- predictor(demo.platforms[[1]], CrossICC.object)
predictor <- function(pre.dat, model) {
if (is(pre.dat, "SummarizedExperiment"))
pre.dat <- assay(pre.dat)
predict.data <- pre.dat
crossICC.object <- model
# validation.Data shoud be format features in rows and samples in columns
crossICC.object.summary <- summaryCrossICC(crossICC.object)
# using interset gene list for prediction
predictFeaturelist <- row.names(pre.dat)
overlap.feature <- intersect(predictFeaturelist, crossICC.object$gene.signature)
differ.length <- length(crossICC.object$gene.signature) - length(overlap.feature)
if (differ.length > 0 & differ.length < 5) {
warning(paste("missing ", differ.length, " features in your expression data set, continue predicting any way ", sep = ""))
} else if (differ.length >= 5) {
stop(paste("missing too many (", differ.length, ") features in your expression data set, plz replace your predict data set",
sep = ""))
}
# get centroid
centroid.list <- lapply(crossICC.object$platforms, cluster.centroid, gene.signature = overlap.feature, cluster = crossICC.object.summary$clusters)
# get centroid of the centroid
train.centroid <- centroidOfcentroid(centroid.list, cluster = crossICC.object.summary$clusters)
# prediction
vali.predict.bycentroid <- centroid2exp(train.centroid, predict.data)
# get prediction result
vali.predict.bycentroid.cluter <- vali.predict.bycentroid$cluster
vali.predict.normalized.matrix <- vali.predict.bycentroid$normalized.matrix
return(list(cluster = vali.predict.bycentroid.cluter, matrix = vali.predict.normalized.matrix))
}
#' Return centroid of centroid from each platform
#'
#' @param centroid.list a list stored the centroid
#' @param cluster a named vector with gene names as name and the cluster number as vector value
#' @return a list contains a vecter that store the predict clusters and a normalized expression matrix
centroidOfcentroid <- function(centroid.list, cluster) {
cluster.name <- unlist(lapply(centroid.list, colnames))
final.matrix <- do.call(cbind, centroid.list)
res <- t(apply(final.matrix, 1, tapply, cluster.name, mean))
return(res)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.