inst/scripts/template_script.R

library(MOFA2)
library(data.table)

# (Optional) set up reticulate connection with Python
# library(reticulate)
# reticulate::use_python("/Users/ricard/anaconda3/envs/base_new/bin/python", required = T)

###############
## Load data ##
###############

# Multiple formats are allowed for the input data:

## -- Option 1 -- ##
# nested list of matrices, where the first index refers to the view and the second index refers to the group.
# samples are stored in the rows and features are stored in the columns.
# Missing values must be filled with NAs, including samples missing an entire view

# (...)

## -- Option 2 -- ##
# data.frame with columns ["sample","feature","view","group","value"]
# In this case there is no need to have missing values in the data.frame,
# they will be automatically filled in when creating the corresponding matrices

file = "ftp://ftp.ebi.ac.uk/pub/databases/mofa/getting_started/data.txt.gz"
data = fread(file)

#######################
# Create MOFA object ##
#######################

MOFAobject <- create_mofa(data)

# Visualise data structure
plot_data_overview(MOFAobject)

####################
## Define options ##
####################

# Data options
# - scale_views: if views have very different ranges/variances, it is good practice to scale each view to unit variance (default is FALSE)
data_opts <- get_default_data_options(MOFAobject)


# Model options
# - likelihoods: likelihood per view (options are "gaussian","poisson","bernoulli"). "gaussian" is used by default
# - num_factors: number of factors. By default K=10
model_opts <- get_default_model_options(MOFAobject)
model_opts$num_factors <- 10

# Training options
# - maxiter: number of iterations
# - convergence_mode: "fast", "medium", "slow". For exploration, the fast mode is good enough.
# - drop_factor_threshold: minimum variance explained criteria to drop factors while training. Default is -1 (no dropping of factors)
# - gpu_mode: use GPU mode? This needs cupy installed and a functional GPU, see https://biofam.github.io/MOFA2/gpu_training.html
# - seed: random seed
train_opts <- get_default_training_options(MOFAobject)
train_opts$convergence_mode <- "medium"
train_opts$seed <- 42

#########################
## Prepare MOFA object ##
#########################

MOFAobject <- prepare_mofa(MOFAobject,
  data_options = data_opts,
  model_options = model_opts,
  training_options = train_opts
)

#####################
## Train the model ##
#####################

MOFAobject <- run_mofa(MOFAobject)

####################
## Save the model ##
####################

outfile <- paste0(getwd(),"/model.hdf5")
saveRDS(MOFAobject, outfile)
bioFAM/MOFA2 documentation built on June 12, 2024, 3:57 p.m.