knitr::opts_chunk$set(echo = TRUE, cache=TRUE)
r Biocpkg("consensusOV")
is a package for molecular subtyping for ovarian cancer. It is intended for whole-transcriptome gene expression datasets from patients with high-grade serous ovarian carcinoma. This package includes implementations of four previously published subtype classifiers
(Helland et al., 2011;
Bentink et al., 2012;
Verhaak et al., 2013;
Konecny et al., 2014)
and a consensus random forest classifier (Chen et al., 2018).
The get.subtypes()
function is a wrapper for the other package subtyping functions get.consensus.subtypes()
, get.konecny.subtypes()
, get.verhaak.subtypes()
,
get.bentink.subtypes()
, get.helland.subtypes()
. It can take as input either a matrix of gene expression values and a vector of Entrez IDs; or an ExpressionSet
from the r Biocpkg("Biobase")
package. If expression.dataset
is a matrix, it should be formatted with genes as rows and patients as columns; and entrez.ids
should be a vector with length the same as nrow(expression.dataset)
. The method
argument specifies which of the five subtype classifiers to use.
library(consensusOV) library(Biobase) library(genefu)
The package contains a subset of the ovarian cancer microarray dataset GSE14764 as example data.
data(GSE14764.eset) dim(GSE14764.eset) GSE14764.expression.matrix <- exprs(GSE14764.eset) GSE14764.expression.matrix[1:5,1:5] GSE14764.entrez.ids <- fData(GSE14764.eset)$EntrezGene.ID head(GSE14764.entrez.ids)
bentink.subtypes <- get.subtypes(GSE14764.eset, method = "Bentink") bentink.subtypes$Bentink.subtypes konecny.subtypes <- get.subtypes(GSE14764.eset, method = "Konecny") konecny.subtypes$Konecny.subtypes helland.subtypes <- get.subtypes(GSE14764.eset, method = "Helland") helland.subtypes$Helland.subtypes
# to align with the Verhaak subtypes, we need to remove the "geneid." in the rownames temp_eset <- GSE14764.eset rownames(temp_eset) <- gsub("geneid.", "", rownames(temp_eset)) verhaak.subtypes <- get.subtypes(temp_eset, method = "Verhaak")
verhaak.subtypes$Verhaak.subtypes consensus.subtypes <- get.subtypes(GSE14764.eset, method = "consensusOV") consensus.subtypes$consensusOV.subtypes
## Alternatively, e.g. data(sigOvcAngiogenic) bentink.subtypes <- get.subtypes(GSE14764.expression.matrix, GSE14764.entrez.ids, method = "Bentink")
Each subtyping function outputs a list with two values. The first value is a factor of subtype labels. The second is an classifier-specific values. For the Konecny, Helland, Verhaak, and Consensus classifiers, this object is a dataframe with subtype specific scores. For the Bentink classifier, the object is the output of the genefu
function call.
Subtype classifiers can alternatively be called using inner functions.
bentink.subtypes <- get.bentink.subtypes(GSE14764.expression.matrix, GSE14764.entrez.ids)
The Konecny, Helland, Verhaak, and Consensus classifiers produce real-valued subtype scores. We can use these in various ways - for example, here, we compute correlations between correspinding subtype scores.
We can compare the subtype scores between the Verhaak and Helland classifiers:
vest <- verhaak.subtypes$gsva.out vest <- vest[,c("IMR", "DIF", "PRO", "MES")] hest <- helland.subtypes$subtype.scores hest <- hest[, c("C2", "C4", "C5", "C1")] dat <- data.frame( as.vector(vest), rep(colnames(vest), each=nrow(vest)), as.vector(hest), rep(colnames(hest), each=nrow(hest))) colnames(dat) <- c("Verhaak", "vsc", "Helland", "hsc") ## plot library(ggplot2) ggplot(dat, aes(Verhaak, Helland)) + geom_point() + facet_wrap(vsc~hsc, nrow = 2, ncol = 2)
Corresponding correlation values are
r round(cor(verhaak.subtypes$gsva.out[,"DIF"], helland.subtypes$subtype.scores[,"C4"]), digits=2)
,
r round(cor(verhaak.subtypes$gsva.out[,"IMR"], helland.subtypes$subtype.scores[,"C2"]), digits=2)
,
r round(cor(verhaak.subtypes$gsva.out[,"MES"], helland.subtypes$subtype.scores[,"C1"]), digits=2)
, and
r round(cor(verhaak.subtypes$gsva.out[,"PRO"], helland.subtypes$subtype.scores[,"C5"]), digits=2)
.
Likewise, we can compare the subtype scores between the Konecny and Helland classifier:
kost <- konecny.subtypes$spearman.cc.vals hest <- helland.subtypes$subtype.scores hest <- hest[, c("C2", "C4", "C5", "C1")] dat <- data.frame( as.vector(kost), rep(colnames(kost), each=nrow(kost)), as.vector(hest), rep(colnames(hest), each=nrow(hest))) colnames(dat) <- c("Konecny", "ksc", "Helland", "hsc") ## plot ggplot(dat, aes(Konecny, Helland)) + geom_point() + facet_wrap(ksc~hsc, nrow = 2, ncol = 2)
Corresponding correlation values are
r round(cor(konecny.subtypes$spearman.cc.vals[,"C1_immL"], helland.subtypes$subtype.scores[,"C2"]), digits=2)
,
r round(cor(konecny.subtypes$spearman.cc.vals[,"C2_diffL"], helland.subtypes$subtype.scores[,"C4"]), digits=2)
,
r round(cor(konecny.subtypes$spearman.cc.vals[,"C3_profL"], helland.subtypes$subtype.scores[,"C5"]), digits=2)
,
and r round(cor(konecny.subtypes$spearman.cc.vals[,"C4_mescL"], helland.subtypes$subtype.scores[,"C1"]), digits=2)
.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.