R/methods-compareModels.R

#' Compare Two Mathematical Models Represented as `S4` Objects
#'
#' @param model1 A `S4` object representing some kind of mathematical model.
#' @param model2 A `S4` object representing some kind of mathematical model.
#' @param ... Allow new parameters to be defined for this generic.
#'
#' @return A `S4` object with statistics about the performance of each model.
#'
#' @examples
#' data(sampleValPCOSPmodel)
#' data(sampleClinicalModel)
#' data(sampleCohortList)
#'
#' # Set parallelization settings
#' BiocParallel::register(BiocParallel::SerialParam())
#'
#' # Train the model
#' trainedClinicalModel <- trainModel(sampleClinicalModel)
#'
#' # Predict risk/risk-class
#' ClinicalPredPCSI <- predictClasses(sampleCohortList[c('PCSI', 'TCGA')],
#'   model=trainedClinicalModel)
#'
#' # Validate the models
#' validatedClinicalModel <- validateModel(trainedClinicalModel,
#'   valData=ClinicalPredPCSI)
#'
#' # Compare the models
#' modelComp <- compareModels(sampleValPCOSPmodel, validatedClinicalModel)
#' head(modelComp)
#'
#' @md
#' @export
setGeneric('compareModels', function(model1, model2, ...)
    standardGeneric('compareModels'))
#'
#' Compare Two `SurivalModel` Objects, Returing A `ModelComparison` Object
#'   With Statistics Comparing the Performance of Each Model.
#'
#' @param model1 An object inherting from the `SurvivalModel` class.
#' @param model2 Another object inherting from the `SurvivalModel` class
#' @param modelNames Optional character vector with a name for each model.
#'   Defaults to the class of the model plus 1 and 2 if missing.
#'
#' @return A `ModelComparison` object with statistics comparing the two models.
#'
#' @examples
#' data(sampleValPCOSPmodel)
#' data(sampleClinicalModel)
#' data(sampleCohortList)
#'
#' # Set parallelization settings
#' BiocParallel::register(BiocParallel::SerialParam())
#'
#' # Train the model
#' trainedClinicalModel <- trainModel(sampleClinicalModel)
#'
#' # Predict risk/risk-class
#' ClinicalPredPCSI <- predictClasses(sampleCohortList[c('PCSI', 'TCGA')],
#'   model=trainedClinicalModel)
#'
#' # Validate the models
#' validatedClinicalModel <- validateModel(trainedClinicalModel,
#'   valData=ClinicalPredPCSI)
#'
#' # Compare the models
#' modelComp <- compareModels(sampleValPCOSPmodel, validatedClinicalModel)
#' head(modelComp)
#'
#' @md
#' @export
setMethod('compareModels', signature(model1='SurvivalModel',
    model2='SurvivalModel'), function(model1, model2, modelNames)
{
    # deal with making model names unique when comparing two models of the
    # same type
    if (missing(modelNames)) {
        if (!is(model1, class(model2))) {
            modelNames <- c(class(model1), class(model2))
        } else {
            modelNames <- c(paste0(class(model1), '_', 1),
                paste0(class(model2), '_', 2))
        }
    }

    validationStats(model1)$model_name <- modelNames[1]
    validationStats(model2)$model_name <- modelNames[2]

    ModelComparison(model1, model2)
})

#' @inherit compareModels,SurvivalModel,SurvivalModel-method
#'
#' @param model2Name A `character` vector with the name of the second model.
#'
#' @examples
#' data(sampleValPCOSPmodel)
#' data(sampleClinicalModel)
#' data(sampleCohortList)
#'
#' # Set parallelization settings
#' BiocParallel::register(BiocParallel::SerialParam())
#'
#' # Train the models
#' trainedClinicalModel <- trainModel(sampleClinicalModel)
#'
#' # Predict risk/risk-class
#' clinicalPredCohortL <- predictClasses(sampleCohortList[c('PCSI', 'TCGA')],
#'   model=trainedClinicalModel)
#'
#' # Validate the models
#' validatedClinicalModel <- validateModel(trainedClinicalModel,
#'   valData=clinicalPredCohortL)
#'
#' # Compare the models
#' modelComp <- compareModels(sampleValPCOSPmodel, validatedClinicalModel)
#' head(modelComp)
#'
#' # Compare model comparison to another model
#' modelCompComp <- compareModels(modelComp, sampleValPCOSPmodel)
#'
#' @md
#' @export
setMethod('compareModels', signature(model1='ModelComparison',
    model2='SurvivalModel'), function(model1, model2, model2Name)
{
    if (missing(model2Name)) {
        model2Name <- class(model2)
        modelCompDT <- as.data.table(model1)
        # count the number of existing model name to ensure
        # the class + number combination is unique
        if (model2Name %in% modelCompDT$models)
            model2Name <- paste0(model2Name, '_',
                DT[model == model2Name, length(unique(model_name))])
    }

    validationStats(model2)$model_name <- model2Name

    ModelComparison(model1, model2)
})
bhklab/PDATK documentation built on Dec. 27, 2021, 7:46 a.m.