library(xtable)
The MetaGxOvarian package is a compendium of Ovarian Cancer datasets. The package is publicly available and can be installed from Bioconductor into R version 3.6.0 or higher.
To install the MetaGxOvarian package from Bioconductor:
if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install("MetaGxOvarian")
First we load the MetaGxOvarian package into the workspace.
To load the packages into R, please use the following commands:
library(MetaGxOvarian) esets <- MetaGxOvarian::loadOvarianEsets()[[1]]
This will load 26 expression datasets. Users can modify the parameters of the function to restrict datasets that do not meet certain criteria for loading. Some example parameters are shown below:
keepCommonOnly
: Retain only genes that are common across all platforms loaded (default = FALSE)minSampleSize
: Retain studies with a minimum sample size (default = 0)minNumberGenes
: Retain studies with a minimum number of genes (default = 0)minNUmberEvents
: Retain studies with a minimum number of survival events (default = 0)removeDuplicates
: Remove duplicate samples (default = TRUE)numSamples <- vapply(seq_along(esets), FUN=function(i, esets) { length(sampleNames(esets[[i]])) }, numeric(1), esets=esets) SampleNumberSummaryAll <- data.frame(NumberOfSamples = numSamples, row.names = names(esets)) total <- sum(SampleNumberSummaryAll[,"NumberOfSamples"]) SampleNumberSummaryAll <- rbind(SampleNumberSummaryAll, total) rownames(SampleNumberSummaryAll)[nrow(SampleNumberSummaryAll)] <- "Total" xtable(SampleNumberSummaryAll, digits = 2)
We can also obtain a summary of the phenotype data (pData) for each expression dataset. Here, we assess the proportion of samples in every datasets that contain a specific pData variable.
pDataID <- c("sample_type", "histological_type", "primarysite", "summarygrade", "summarystage", "tumorstage", "grade", "age_at_initial_pathologic_diagnosis", "pltx", "tax", "neo", "days_to_tumor_recurrence", "recurrence_status", "days_to_death", "vital_status") pDataPercentSummaryTable <- NULL pDataSummaryNumbersTable <- NULL pDataSummaryNumbersList = lapply(esets, function(x) vapply(pDataID, function(y) sum(!is.na(pData(x)[,y])), numeric(1))) pDataPercentSummaryList = lapply(esets, function(x) vapply(pDataID, function(y) sum(!is.na(pData(x)[,y]))/nrow(pData(x)), numeric(1))*100) pDataSummaryNumbersTable = sapply(pDataSummaryNumbersList, function(x) x) pDataPercentSummaryTable = sapply(pDataPercentSummaryList, function(x) x) rownames(pDataSummaryNumbersTable) <- pDataID rownames(pDataPercentSummaryTable) <- pDataID colnames(pDataSummaryNumbersTable) <- names(esets) colnames(pDataPercentSummaryTable) <- names(esets) pDataSummaryNumbersTable <- rbind(pDataSummaryNumbersTable, total) rownames(pDataSummaryNumbersTable)[nrow(pDataSummaryNumbersTable)] <- "Total" # Generate a heatmap representation of the pData pDataPercentSummaryTable<-t(pDataPercentSummaryTable) pDataPercentSummaryTable<-cbind(Name=(rownames(pDataPercentSummaryTable)) ,pDataPercentSummaryTable) nba<-pDataPercentSummaryTable gradient_colors = c("#ffffff","#ffffd9","#edf8b1","#c7e9b4","#7fcdbb", "#41b6c4","#1d91c0","#225ea8","#253494","#081d58") library(lattice) nbamat<-as.matrix(nba) rownames(nbamat)<-nbamat[,1] nbamat<-nbamat[,-1] Interval<-as.numeric(c(10,20,30,40,50,60,70,80,90,100)) levelplot(nbamat,col.regions=gradient_colors, main="Available Clinical Annotation", scales=list(x=list(rot=90, cex=0.5), y= list(cex=0.5),key=list(cex=0.2)), at=seq(from=0,to=100,length=10), cex=0.2, ylab="", xlab="", lattice.options=list(), colorkey=list(at=as.numeric(factor(c(seq(from=0, to=100, by=10)))), labels=as.character(c( "0","10%","20%","30%", "40%","50%", "60%", "70%", "80%","90%", "100%"), cex=0.2,font=1,col="brown",height=1, width=1.4), col=(gradient_colors)))
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.