knitr::opts_chunk$set(dev = 'pdf')
This report presents an overview of the DEP analysis.
Original file contains r nrow(data)
proteins groups, of which r nrow(dep)
proteins were reproducibly quantified.
In total r ncol(data)
samples were detected.
r colnames(data)
r nrow(dep[rowData(dep)$significant, ])
proteins differ significantly between samples.Parameters used:
r gsub("_p.adj", "", colnames(rowData(dep))[grep("p.adj", colnames(rowData(dep)))])
r param$alpha
r param$lfc
\pagebreak
Protein identifications per sample.
pg_width = ncol(filt) / 3 if (pg_width > 10) { pg_width = 10 }
plot_numbers(filt)
Proteins coverage in all samples.
plot_coverage(filt)
\pagebreak
The data was normalized using 'vsn'.
norm_height = ncol(filt) / 2
plot_normalization(filt, norm)
\pagebreak
To asses the type of missing data (random or not), a heatmap of missing values is plotted. If data is randomly missing, use the "knn" option for imputation. If the missing data is biased to certain samples (e.g. controls) which are expected to be depleted of certain proteins, use the "QRILC", "MinProb" or "man" options for imputation.
plot_missval(norm)
\pagebreak
Quantitative information of proteins with and without missing values.
plot_detect(norm)
\pagebreak
Intensity distributions before and after imputation.
plot_imputation(norm, dep)
\pagebreak
num = 400 if (nrow(dep) < 400) num = nrow(dep)
plot_pca(dep, n = num)
plot_cor(dep)
len = nrow(dep[rowData(dep)$significant, ]) / 7 if (len < 2) { len = 2 }
df <- assay(dep[rowData(dep)$significant, ]) - rowMeans(assay(dep[rowData(dep)$significant, ])) col_lim <- quantile(df, probs= 0.95) - quantile(df, probs= 0.05) if (len < col_lim) { col_lim = 2 }
plot_heatmap(dep, "contrast", k = 6, col_limit = (2 * col_lim))
width = ncol(filt) / 3 if (width < 5) { width = 5 } if (width > 10) { width = 10 }
plot_heatmap(dep, "centered", k = 6, col_limit = col_lim)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.