qusage is published software that is slow for large runs, SpeedSage corrects for speed and efficiency at large orders. there is Bottlenecking of Functions Qusage can improve the speed of its algorithm by minimizing the cost of computaiton.
trading NA flexibility slows down qusage runs, but having the user input no NAs enforcing good input, this speeds up calcIndividualExpressions, as well as using C++ libraries.
This test the local version which enforces no NA in Baseline or PostTreatment object, this reduces the flexibility. this test data is from the vignette where postTreatment was modified to be Baseline+20.4, a simple training set from the QuSAGE vignette.
library(inline) library(microbenchmark) library(Rcpp) library(parallel) library(speedSage) library(qusage) library(ggplot2) eset<-system.file("extdata","eset.RData",package="speedSage") load(eset) labels<-c(rep("t0",134),rep("t1",134)) contrast<-"t1-t0" colnames(eset)<-c(rep("t0",134),rep("t1",134)) fileISG<-system.file("extdata","c2.cgp.v5.1.symbols.gmt",package="speedSage") ISG.geneSet<-read.gmt(fileISG) geneSets<-ISG.geneSet[grepl("DER_IFN_GAMMA_RESPONSE_UP",names(ISG.geneSet))] Baseline<-eset PostTreatment<-eset+20.4 ncol(Baseline) #not splitting up eset i<-1 #for testing 1 gene set sourceCpp(file="/home/anthonycolombo/Documents/qusage/qusage_repos/qusage_speed/R/sigmaArm.cpp") sourceCpp(file="/home/anthonycolombo/Documents/qusage/qusage_repos/qusage_speed/R/sigmaSingle.cpp") sourceCpp(file="/home/anthonycolombo/Documents/qusage/qusage_repos/qusage_speed/R/bayesEstimation.cpp") sourceCpp(file="/home/anthonycolombo/Documents/qusage/qusage_repos/qusage_speed/R/notbayesEstimation.cpp") sourceCpp(file="/home/anthonycolombo/Documents/qusage/qusage_repos/qusage_speed/R/calcVIFarm.cpp") sourceCpp(file="/home/anthonycolombo/Documents/qusage/qusage_repos/qusage_speed/R/calcVIFarmalt.cpp") sourceCpp(file="/home/anthonycolombo/Documents/qusage/qusage_repos/qusage_speed/R/calcVIFarm_nosdalphaalt.cpp") pairVector<-NULL var.equal<-FALSE filter.genes<-FALSE n.points<-2^12 #setting up calcVif call objects results = makeComparisonArm(eset, labels, contrast, pairVector=pairVector,var.equal=var.equal) nu = floor(min(results$dof,na.rm=T)) geneResults = aggregateGeneSet(results, geneSets, silent=F, n.points=n.points) #eset, and results parameters for vif useAllData<-TRUE useCAMERA<-FALSE ##### qusage VIF calc ogVIF<-calcVIF(eset,geneResults) #for local code use ogGeneSets<-geneResults$pathways GNames<-names(geneResults$mean)[ogGeneSets[[1]]] gs.i = which(rownames(eset)%in%GNames) ###now to compare
library(speedSage) useCAMERA<-FALSE sourceCpp(file="/home/anthonycolombo/Documents/qusage/qusage_repos/qusage_speed/R/calcVIFarmalt.cpp") sourceCpp(file="/home/anthonycolombo/Documents/qusage/qusage_repos/qusage_speed/R/calcVIFarm_nosdalphaalt.cpp") t2<-calcVIFarmalt(names(geneResults$mean),gs.i, geneResults$pathways[[i]],rownames(eset),eset,levels(geneResults$labels), geneResults$sd.alpha) library(ggplot2) speedUp<-microbenchmark( calcVIFarmalt(names(geneResults$mean),gs.i, geneResults$pathways[[1]],rownames(eset),eset,levels(geneResults$labels), geneResults$sd.alpha), calcVIF(eset,geneResults) ) speedUp source("/home/anthonycolombo/Documents/qusage/qusage_repos/qusage_speed/R/calcVIFArm.R") myVIF<-calcVIFArm(eset,geneResults) ### TO DO ensure that calcVIFarm matches qusage::calcVIF.R identical(names(myVIF),names(ogVIF)) identical(myVIF$labels,ogVIF$labels) identical(myVIF$contrast,ogVIF$contrast) identical(myVIF$n.samples,ogVIF$n.samples) identical(myVIF$mean,ogVIF$mean) identical(myVIF$sd.alpha,ogVIF$sd.alpha) identical(myVIF$dof,ogVIF$dof) identical(myVIF$var.method,ogVIF$var.method) identical(myVIF$pathways,ogVIF$pathways) identical(myVIF$path.mean,ogVIF$path.mean) identical(myVIF$path.size,ogVIF$path.size) identical(myVIF$ranges,ogVIF$ranges) identical(myVIF$n.points,ogVIF$n.points) all.equal(myVIF$path.PDF,ogVIF$path.PDF) all.equal(myVIF$vif,ogVIF$vif) qplot( as.vector(abs(myVIF$path.PDF-ogVIF$path.PDF)), xlab="Path PDF ") qplot( as.vector(abs(myVIF$vif-ogVIF$vif)), xlab="VIF ") library(ggplot2) mb<-microbenchmark( myVIF<-calcVIFArm(eset,geneResults), ogVIF<-calcVIF(eset,geneResults),times=1000 ) autoplot(mb) mb
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.