## ---- message=FALSE, eval=FALSE------------------------------------------
# library(MeinteR)
## ---- eval=FALSE---------------------------------------------------------
# nameStudy(study.name="MyProj")
## ---- message=FALSE, eval=FALSE------------------------------------------
# project.dir <- "~/meinter_dir"
## ---- message=FALSE, eval=FALSE------------------------------------------
# head(sample)
## ---- eval=FALSE, message=FALSE------------------------------------------
# re.sample = reorderBed(sample,1,2,3,5,4)
# head(re.sample)
## ---- eval=FALSE---------------------------------------------------------
# input.data <- read.csv(file.path(project.dir, "my_data.csv"), sep=",", header = T)
## ---- eval=FALSE---------------------------------------------------------
# fp <- file.path(project.dir, "GSE37362_annotation.csv")
# geo.data <- importGEO(gse.acc="GSE37362", annotation.file= fp)
## ---- eval=FALSE, message=FALSE------------------------------------------
# #Select DMS with delta-beta values equal to 0
# subsample.1 <- re.sample[re.sample$score == 0,]
# #Select DMS with delta-beta values greater than or equal to 0.30
# subsample.2 <- re.sample[re.sample$score >= 0.30,]
# #Select DMS with absolute delta-beta values greater than or equal to 0.60
# subsample.3 <- re.sample[abs(re.sample$score) >= 0.60,]
## ---- message=FALSE, eval=FALSE------------------------------------------
# #Transcription factors of interest
# tf.ID = c("MA0003.1", "MA0019.1", "MA0004.1", "MA0036.3", "MA0037.3")
# tfbs <-findTFBS(bed.data=subsample.3,persim=0.8, offset=10, target="PROMOTER",
# up.tss=2000, down.tss=100, mcores = 2, tf.ID=tf.ID)
## ---- eval=FALSE---------------------------------------------------------
# plotTF(tfbs[[1]], topTF=10) #topTF:Number of most frequent transcription factors
## ---- message=FALSE, eval=FALSE------------------------------------------
# ctfbs <-findConservedTFBS(subsample.3, known.conserved.tfbs.file="~/tfbsConsSites.gz")
## ---- eval=FALSE---------------------------------------------------------
# scatterConsTF(ctfbs[[2]])
## ---- message=FALSE, eval=FALSE------------------------------------------
# ss <- findSpliceSites(bed.data=subsample.3, persim=0.8, offset= 10)
## ---- eval=FALSE, message=FALSE------------------------------------------
# head(ss[[1]])
# head(ss[[2]])
## ---- eval=FALSE, message=FALSE------------------------------------------
# altss <- findAltSplicing(subsample.3)
## ---- message=FALSE, eval=FALSE------------------------------------------
# head(altss[[1]])
# head(altss[[2]])
# head(altss[[3]])
# altss[[4]] #Plot alternative splicing events
## ---- eval=FALSE---------------------------------------------------------
# pals <- findPals(bed.data=subsample.3, offset=10, min.arm=5, max.loop=5, max.mismatch=1)
## ---- eval=FALSE, message=FALSE------------------------------------------
# head(pals[[1]],n=1)
# pals[[2]] # On/Off DMS palindromes
# head(pals[[3]]) #Number of palindromes per DMS
## ---- eval=FALSE, message=FALSE------------------------------------------
# #Detect G4s in the 100nt region flanking DMS
# quads <- findQuads(bed.data=subsample.3, offset=100)
# quads[[1]] # G4 locus information for each sequence
# quads[[2]] # G4 on/neighboring input data
# quads[[3]] # Number of G4 per sequence
## ---- eval=FALSE, message=FALSE------------------------------------------
# #Detect DNA shapes in the 100nt region flanking DMS in the re.sample data
# shapes <- findShapes(bed.data=subsample.3, offset=100)
## ----call_genomic_index, eval=FALSE, message=FALSE-----------------------
# #Calculate genomic index
# weights = list()
# weights[["spls"]] = 1
# weights[["ctfbs"]] = 2
# weights[["tfbs"]] = 2
# weights[["pals"]] = 1
# weights[["quads"]] = 2
# weights[["shapes"]] = 1
# funList = list()
# funList[["spls"]] = ss
# funList[["altss"]] = altss
# funList[["tfbs"]] = tfbs
# funList[["ctfbs"]] = ctfbs
# funList[["pals"]] = pals
# funList[["quads"]] = quads
# funList[["shapes"]] = shapes
# index <- meinter(subsample.3, funList, weights)
# head(index) # Highly ranked DMS
## ---- message=FALSE, eval=FALSE------------------------------------------
# dev.off() #close any open plot device
# res <- plotCpG(bed.data=re.sample, offset=100)
## ---- message=FALSE, eval=FALSE------------------------------------------
# plotBeta(bed.data=re.sample)
## ---- message=FALSE, eval=FALSE------------------------------------------
# project.dir <- "~/GSE37362"
# setwd(project.dir)
# library(MeinteR)
# gse.accession <- "GSE37362"
# annotation.file <- file.path(project.dir,"GSE37362_annotation.csv")
# geo.data <- importGEO(gse.acc=gse.accession, annotation.file=annotation.file)
## ---- message=FALSE, eval=FALSE------------------------------------------
# # Re-order columns and omit rows with empty cells
# bed.data<-na.omit(reorderBed(geo.data[[1]],3,4,5,2))
## ---- message=FALSE, eval=FALSE------------------------------------------
# #Select probes with delta-beta < -0.2
# sub.data <- subset(bed.data, bed.data$score < -0.2) # 713 probes
# quads <- findQuads(sub.data, offset=100)
# pals <- findPals(sub.data, offset=100)
# altspl <- findAltSplicing(sub.data)
# tfbs <- findTFBS(sub.data, target="PROMOTER", up.tss=5000, down.tss=100)
# ss <- findSpliceSites(sub.data)
# shapes <- findShapes(sub.data, offset=100)
## ---- message=FALSE, eval=FALSE------------------------------------------
# #Transform all the bed.gz files in the ~/GSE69272_RAW folder
# files <- list.files(path="~/GSE69272_RAW", pattern="*.bed.gz",
# full.names=T, recursive=FALSE)
# all.samples <- lapply(files, function(samples) {
# loadSeqGEO(file.path=samples, cov=30, chroms="chr19")
# })
#
## ---- message=FALSE, eval=FALSE------------------------------------------
# library(MeinteR)
# rm(list = ls())
# re.sample <- reorderBed(sample, 1, 2, 3, 5, 4)
# bed.data <- re.sample[re.sample$score >= 0.50,]
# altSS <- findAltSplicing(bed.data)
# ss <- findSpliceSites(bed.data, persim = 0.8, offset = 10)
# pals <- findPals(bed.data)
# quads <- findQuads(bed.data, offset = 50)
# tfbs <-
# findTFBS(
# bed.data,
# target = "all",
# tf.ID = c("MA0107.1", "MA0098", "MA115.1", "MA0131.2")
# )
# ctfbs <-
# findConservedTFBS(bed.data, known.conserved.tfbs.file = "~/Downloads/tfbsConsSites.txt.gz")
# shapes <- findShapes(bed.data)
# weights = list()
# weights[["spls"]] = 1
# weights[["ctfbs"]] = 1
# weights[["tfbs"]] = 1
# weights[["pals"]] = 1
# weights[["quads"]] = 1
# weights[["shapes"]] = 1
# funList = list()
# funList[["spls"]] = ss
# funList[["altss"]] = altSS
# funList[["tfbs"]] = tfbs
# funList[["ctfbs"]] = ctfbs
# funList[["pals"]] = pals
# funList[["quads"]] = quads
# funList[["shapes"]] = shapes
# index <- meinter(re.sample, funList, weights)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.