R/Normalize.R

Defines functions NormalizeTPM NormalizeRPM

Documented in NormalizeRPM NormalizeTPM

# ADImpute predicts unmeasured gene expression values from single cell
# RNA-sequencing data (dropout imputation). This R-package combines multiple
# dropout imputation methods, including a novel gene regulatory
# network-based method.  Copyright (C) 2020 Ana Carolina Leote This program
# is free software: you can redistribute it and/or modify it under the terms
# of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.  This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General
# Public License for more details.  You should have received a copy of the
# GNU General Public License along with this program.  If not, see
# <https://www.gnu.org/licenses/>.


#' @title RPM normalization
#'
#' @description \code{NormalizeRPM} performs RPM normalization, with possibility
#' to log the result
#'
#' @usage NormalizeRPM(data, sce = NULL, log = FALSE, scale = 1,
#' pseudo.count = 1)
#'
#' @param data matrix; raw data (genes as rows and samples as columns)
#' @param sce SingleCellExperiment; raw data
#' @param log logical; log RPMs?
#' @param scale integer; scale factor to divide RPMs by
#' @param pseudo.count numeric; if \code{log = TRUE}, value to add to RPMs in
#' order to avoid taking \code{log(0)}
#'
#' @return matrix; library size normalized data
#'
#' @examples
#' demo <- NormalizeRPM(ADImpute::demo_data)
#'
#' @export
#'
NormalizeRPM <- function(data, sce = NULL, log = FALSE, scale = 1,
    pseudo.count = 1) {

    if(!is.null(sce)){
        DataCheck_SingleCellExperiment(sce, normalized = FALSE)
        data <- SingleCellExperiment::counts(sce)
    }

    # check input data
    data <- DataCheck_Matrix(data)

    # divide by million RPK in sample - transcripts per million (TPM)
    data <- sweep(data, 2, STATS = colSums(data)/(10^6), FUN = "/")

    if(!is.null(sce))
        SingleCellExperiment::cpm(sce) <- data

    data <- data/scale

    if(!is.null(sce))
        SingleCellExperiment::normcounts(sce) <- data

    if (log) {
        if (pseudo.count == 0) {
            warning("Using 0 pseudocount: Inf may be generated.\n")
        }
        data <- log2(data + pseudo.count)

        if(!is.null(sce))
            SingleCellExperiment::logcounts(sce) <- data
    }

    if(is.null(sce)){
        return(data)
    } else{
        return(sce)
    }
}


#' @title TPM normalization
#'
#' @description \code{NormalizeTPM} performs TPM normalization, with possibility
#' to log the result
#'
#' @usage NormalizeTPM(data, sce = NULL, tr_length = NULL, log = FALSE,
#' scale = 1, pseudo.count = 1)
#'
#' @param data matrix; raw data (genes as rows and samples as columns)
#' @param sce SingleCellExperiment; raw data
#' @param tr_length data.frame with at least 2 columns: 'hgnc_symbol'
#' and 'transcript_length'
#' @param log logical; log TPMs?
#' @param scale integer; scale factor to divide TPMs by
#' @param pseudo.count numeric; if \code{log = T}, value to add to TPMs in order
#' to avoid taking \code{log(0)}
#'
#' @details Gene length is estimated as the median of the lengths of all
#' transcripts for each gene, as obtained from biomaRt.
#' Genes for which length information cannot be found in biomaRt are dropped.
#'
#' @return matrix; normalized data (for transcript length and library size)
#'
#' @examples
#' demo <- NormalizeTPM(ADImpute::demo_data)
#'
#' @export
#'
NormalizeTPM <- function(data, sce = NULL, tr_length = NULL, log = FALSE,
    scale = 1, pseudo.count = 1) {

    if (is.null(tr_length))
        tr_length <- ADImpute::transcript_length

    tr_length <- DataCheck_TrLength(tr_length)

    if(!is.null(sce)){
        DataCheck_SingleCellExperiment(sce, normalized = FALSE)
        data <- SingleCellExperiment::counts(sce)
    }

    # check input data
    data <- DataCheck_Matrix(data)

    # Median length of all transcripts for a given gene
    med_length <- stats::aggregate(x = tr_length$transcript_length,
        by = list(hgnc_symbol = tr_length$hgnc_symbol), FUN = stats::median)
    common <- intersect(rownames(data), med_length$hgnc_symbol)
    if (length(common) < 2)
        stop("No enough overlap between data rownames and transcript length.\n")
    data <- data[common, ]

    med_length <- med_length[match(common, med_length$hgnc_symbol), ]

    # divide by length of transcript in kb - reads per kilobase (RPK)
    data <- sweep(data, 1, STATS = med_length$x/1000, FUN = "/")
    # divide by million RPK in sample - transcripts per million (TPM)
    data <- sweep(data, 2, STATS = colSums(data)/(10^6), FUN = "/")

    if(!is.null(sce))
        SingleCellExperiment::tpm(sce) <- data

    data <- data/scale

    if(!is.null(sce))
        SingleCellExperiment::normcounts(sce) <- data

    if (log) {
        if (pseudo.count == 0)
            warning("Using 0 pseudocount: Inf may be generated.\n")
        data <- log2(data + pseudo.count)
        if(!is.null(sce))
            SingleCellExperiment::logcounts(sce) <- data
    }

    if(is.null(sce)){ return(data) } else{ return(sce) }
}
anacarolinaleote/ADImpute documentation built on May 18, 2021, 10:11 p.m.