context("plotting")
test_that("plot_average_intensity() creates a plot", {
p <-plot_average_intensity(simulated_image, reference_marker="Immune_marker3",
target_marker="Immune_marker2",
c(30, 35, 40, 45, 50, 75, 100))
expect_is(p, "ggplot")
})
test_that("plot_cell_categories() creates a plot", {
phenotypes_of_interest <- c("Tumour", "Immune2")
colour_vector <- c("darkgrey", "blue")
p <- plot_cell_categories(defined_image, phenotypes_of_interest,
colour_vector,"Cell.Type")
expect_is(p, "ggplot")
})
test_that("plot_cell_distances_violin() creates a plot", {
pairwise_dist <- calculate_pairwise_distances_between_celltypes(
defined_image, cell_types_of_interest = c("Tumour","Immune1"),
feature_colname = "Cell.Type")
p <- plot_cell_distances_violin(pairwise_dist)
expect_is(p, "ggplot")
})
test_that("plot_cell_percentages() creates a plot", {
p_cells <- calculate_cell_proportions(simulated_image)
p <- plot_cell_percentages(p_cells)
expect_is(p, "ggplot")
})
test_that("plot_cell_marker_levels() creates a plot", {
p <- plot_cell_marker_levels(simulated_image, "Immune_marker1")
expect_is(p, "ggplot")
})
test_that("plot_marker_level_heatmap() creates a plot", {
p <- plot_marker_level_heatmap(simulated_image, num_splits = 100,
"Tumour_marker")
expect_is(p, "ggplot")
})
test_that("plot_distance_heatmap() creates a plot", {
pairwise_dist <- calculate_pairwise_distances_between_celltypes(
defined_image, cell_types_of_interest = c("Tumour","Immune1"),
feature_colname = "Cell.Type")
summary_distances <-
calculate_summary_distances_between_celltypes(pairwise_dist)
p <- plot_distance_heatmap(summary_distances)
expect_is(p, "ggplot")
})
test_that("marker_intensity_boxplot() creates a plot", {
p <- marker_intensity_boxplot(simulated_image, "Immune_marker1")
expect_is(p, "ggplot")
})
test_that("marker_prediction_plot() creates a plot", {
predicted_result <- predict_phenotypes(
spe_object = simulated_image, thresholds = NULL,
tumour_marker = "Tumour_marker",
baseline_markers = c("Immune_marker1", "Immune_marker2",
"Immune_marker3", "Immune_marker4"),
reference_phenotypes = TRUE)
p <- marker_prediction_plot(predicted_result, marker = "Tumour_marker")
expect_is(p, "gtable")
})
test_that("marker_surface_plot() creates a plot", {
p <- marker_surface_plot(simulated_image, num_splits=15,
marker="Immune_marker1")
expect_is(p, "plotly")
})
test_that("marker_surface_plot_stack() creates a plot", {
p <- marker_surface_plot_stack(
simulated_image, num_splits=15,
markers=c("Tumour_marker", "Immune_marker4"))
expect_is(p, "plotly")
})
test_that("dimensionality_reduction_plot() creates a plot", {
p <- dimensionality_reduction_plot(simulated_image, plot_type = "TSNE",
feature_colname = "Phenotype")
expect_is(p, "ggplot")
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.