#' Title
#'
#' @param df data frame, contains columns:
#' `Protein Group Accessions` character
#' `Protein Descriptions` character
#' isLabel character ('TRUE'/'FALSE')
#' columns 1 to n, numeric, n is the total number of
#' fractions/slices, each of this columns
#' contains `Precursor Area` values in a given fraction(columns)
#' for a protein(rows)
#' cluster integer
#' @param name character, specifies the name of the sample
#'
#' @importFrom stats reorder
#'
#' @return plot
#' @export
#'
#' @examples
#'
#' ##Use example normalised proteins file
#' inputFile <- system.file("extData", "dataNormProts.txt", package = "ComPrAn")
#' #read file in and change structure of table to required format
#' forAnalysis <- protImportForAnalysis(inputFile)
#' # create components necessary for clustering
#' clusteringDF <- clusterComp(forAnalysis,scenar = "A", PearsCor = "centered")
#' #assign clusters
#' labTab_clust <- assignClusters(.listDf = clusteringDF,sample = "labeled",
#' method = 'complete', cutoff = 0.5)
#' unlabTab_clust <- assignClusters(.listDf = clusteringDF,sample = "unlabeled",
#' method = 'complete', cutoff = 0.5)
#' #Make bar plots for labeled and unlabeled samples
#' makeBarPlotClusterSummary(labTab_clust, name = 'labeled')
#' makeBarPlotClusterSummary(unlabTab_clust, name = 'unlabeled')
makeBarPlotClusterSummary <- function(df, name = 'sample 1') {
df %>%
group_by(cluster) %>%
mutate(n = n()) %>%
ggplot(aes(reorder(cluster,-n))) +
geom_bar()+
theme_minimal()+
labs(x= 'Cluster number',
y ='Number of proteins in cluster',
title=name)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.