## ------------------------------------------------------------------------
library("artdeco")
# obtain path to testdata
path_transcriptome_file = system.file(
"/Data/Expression_data/PANnen_Test_Data.tsv",
package="artdeco")
# testrun
deconvolution_results = Determine_differentiation_stage(
transcriptome_file_path = path_transcriptome_file
)
# show results
deconvolution_results[1:5,1:5]
## ------------------------------------------------------------------------
visualization_data_path = system.file(
"/Data/Expression_data/Visualization_PANnen.tsv",
package="artdeco")
create_heatmap_differentiation_stages(
visualization_data_path,
deconvolution_results
)
## ------------------------------------------------------------------------
meta_data_path = system.file("Data/Meta_information/Meta_information.tsv", package = "artdeco")
meta_data = read.table(
meta_data_path, sep ="\t", header = TRUE,
stringsAsFactors = FALSE
)
subtype_vector = meta_data$Test_Subtype # extract the training sample subtype labels
subtype_vector[1:6] # show subtype definition
training_data_path = system.file(
"Data/Expression_data/PANnen_Test_Data.tsv", package = "artdeco")
add_deconvolution_training_model(
transcriptome_data_path = training_data_path,
model_name = "My_model",
subtype_vector = subtype_vector,
marker_gene_list = list(),
training_nr_marker_genes = 5,
training_p_value_threshold = 0.05,
training_nr_permutations = 100
)
## ------------------------------------------------------------------------
models = list.files(system.file("Models/", package = "artdeco"))
print(models)
model_to_be_removed = models[length(models)]
remove_model(
model_name = model_to_be_removed
)
## ------------------------------------------------------------------------
training_data_path = system.file(
"Data/Expression_data/PANnen_Test_Data.tsv", package = "artdeco")
expression_matrix = read.table(
training_data_path,
sep ="\t",
header = TRUE,
row.names = 1)
expression_matrix[1:5,1:5]
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.