R/simple-simulate.R

Defines functions simpleSimulate

Documented in simpleSimulate

#' Simple simulation
#'
#' Simulate counts from a simple negative binomial distribution without
#' simulated library sizes, differential expression etc.
#'
#' @param params SimpleParams object containing simulation parameters.
#' @param sparsify logical. Whether to automatically convert assays to sparse
#'        matrices if there will be a size reduction.
#' @param verbose logical. Whether to print progress messages
#' @param ... any additional parameter settings to override what is provided in
#'        \code{params}.
#'
#' @details
#' Gene means are simulated from a gamma distribution with
#' \code{shape = mean.shape} and \code{rate = mean.rate}. Counts are then
#' simulated from a negative binomial distribution with \code{mu = means} and
#' \code{size = 1 / counts.disp}. See \code{\link{SimpleParams}} for more
#' details of the parameters.
#'
#' @return SingleCellExperiment containing simulated counts
#' @examples
#' sim <- simpleSimulate()
#' # Override default parameters
#' sim <- simpleSimulate(nGenes = 1000, nCells = 50)
#' @export
#' @importFrom stats rgamma rnbinom
#' @importFrom SingleCellExperiment SingleCellExperiment
simpleSimulate <- function(params = newSimpleParams(), sparsify = TRUE,
                           verbose = TRUE, ...) {
    checkmate::assertClass(params, "SimpleParams")
    params <- setParams(params, ...)

    # Set random seed
    seed <- getParam(params, "seed")
    # Get the parameters we are going to use
    nCells <- getParam(params, "nCells")
    nGenes <- getParam(params, "nGenes")
    mean.shape <- getParam(params, "mean.shape")
    mean.rate <- getParam(params, "mean.rate")
    count.disp <- getParam(params, "count.disp")

    withr::with_seed(seed, {
        if (verbose) {
            message("Simulating means...")
        }
        means <- rgamma(nGenes, shape = mean.shape, rate = mean.rate)

        if (verbose) {
            message("Simulating counts...")
        }
        counts <- matrix(
            rnbinom(
                as.numeric(nGenes) * as.numeric(nCells),
                mu = means, size = 1 / count.disp
            ),
            nrow = nGenes, ncol = nCells
        )
    })

    if (verbose) {
        message("Creating final dataset...")
    }
    cell.names <- paste0("Cell", seq_len(nCells))
    gene.names <- paste0("Gene", seq_len(nGenes))

    rownames(counts) <- gene.names
    colnames(counts) <- cell.names
    cells <- data.frame(Cell = cell.names)
    rownames(cells) <- cell.names
    features <- data.frame(Gene = gene.names, GeneMean = means)
    rownames(features) <- gene.names

    sim <- SingleCellExperiment(
        assays = list(counts = counts),
        rowData = features,
        colData = cells,
        metadata = list(Params = params)
    )

    if (sparsify) {
        if (verbose) {
            message("Sparsifying assays...")
        }
        assays(sim) <- sparsifyMatrices(
            assays(sim),
            auto = TRUE,
            verbose = verbose
        )
    }

    return(sim)
}
Oshlack/splatter documentation built on Dec. 10, 2024, 3:48 p.m.