R/scDD-simulate.R

Defines functions scDDSimulate

Documented in scDDSimulate

#' scDD simulation
#'
#' Simulate counts using the scDD method.
#'
#' @param params SCDDParams object containing simulation parameters.
#' @param plots logical. whether to generate scDD fold change and validation
#' plots.
#' @param plot.file File path to save plots as PDF.
#' @param sparsify logical. Whether to automatically convert assays to sparse
#'        matrices if there will be a size reduction.
#' @param verbose logical. Whether to print progress messages
#' @param BPPARAM A \code{\link{BiocParallelParam}} instance giving the parallel
#'        back-end to be used. Default is \code{\link{SerialParam}} which uses a
#'        single core.
#' @param ... any additional parameter settings to override what is provided in
#'        \code{params}.
#'
#' @details
#' This function is just a wrapper around \code{\link[scDD]{simulateSet}} that
#' takes a \code{\link{SCDDParams}}, runs the simulation then converts the
#' output to a \code{\link[SingleCellExperiment]{SingleCellExperiment}} object.
#' See \code{\link[scDD]{simulateSet}} for more details about how the simulation
#' works.
#'
#' @return SingleCellExperiment containing simulated counts
#'
#' @references
#' Korthauer KD, Chu L-F, Newton MA, Li Y, Thomson J, Stewart R, et al. A
#' statistical approach for identifying differential distributions in
#' single-cell RNA-seq experiments. Genome Biology (2016).
#'
#' Paper: \url{10.1186/s13059-016-1077-y}
#'
#' Code: \url{https://github.com/kdkorthauer/scDD}
#'
#' @examples
#' \donttest{
#' sim <- scDDSimulate()
#' }
#' @export
#' @importFrom BiocParallel SerialParam
#' @importFrom SingleCellExperiment SingleCellExperiment
scDDSimulate <- function(params = newSCDDParams(), plots = FALSE,
                         plot.file = NULL, sparsify = TRUE, verbose = TRUE,
                         BPPARAM = SerialParam(), ...) {
    checkmate::assertClass(params, "SCDDParams")
    params <- setParams(params, ...)

    nCells <- getParam(params, "nCells")

    if (verbose) {
        message("Simulating counts with scDD...")
    }
    # Restore the default varInflation to NULL
    varInflation <- getParam(params, "varInflation")
    if (all(varInflation == 1)) {
        varInflation <- NULL
    }
    if (verbose) {
        scDD.sim <- scDD::simulateSet(
            SCdat = getParam(params, "SCdat"),
            numSamples = nCells,
            nDE = getParam(params, "nDE"),
            nDP = getParam(params, "nDP"),
            nDM = getParam(params, "nDM"),
            nDB = getParam(params, "nDB"),
            nEE = getParam(params, "nEE"),
            nEP = getParam(params, "nEP"),
            sd.range = getParam(params, "sd.range"),
            modeFC = getParam(params, "modeFC"),
            plots = plots,
            plot.file = plot.file,
            random.seed = getParam(params, "seed"),
            varInflation = varInflation,
            condition = getParam(params, "condition"),
            param = BPPARAM
        )
    } else {
        withr::with_output_sink(tempfile(), {
            suppressMessages({
                scDD.sim <- scDD::simulateSet(
                    SCdat = getParam(params, "SCdat"),
                    numSamples = nCells,
                    nDE = getParam(params, "nDE"),
                    nDP = getParam(params, "nDP"),
                    nDM = getParam(params, "nDM"),
                    nDB = getParam(params, "nDB"),
                    nEE = getParam(params, "nEE"),
                    nEP = getParam(params, "nEP"),
                    sd.range = getParam(params, "sd.range"),
                    modeFC = getParam(params, "modeFC"),
                    plots = plots,
                    plot.file = plot.file,
                    random.seed = getParam(params, "seed"),
                    varInflation = varInflation,
                    condition = getParam(params, "condition"),
                    param = BPPARAM
                )
            })
        })
    }

    counts <- SummarizedExperiment::assays(scDD.sim)$normcounts
    foldchanges <- SummarizedExperiment::rowData(scDD.sim)$FC
    de.status <- SummarizedExperiment::rowData(scDD.sim)$Category

    if (verbose) {
        message("Creating final dataset...")
    }
    cell.names <- paste0("Cell", seq_len(nCells * 2))
    gene.names <- paste0("Gene", seq_len(getParam(params, "nGenes")))

    rownames(counts) <- gene.names
    colnames(counts) <- cell.names

    cells <- data.frame(
        Cell = cell.names,
        Condition = rep(seq_len(2), each = nCells)
    )
    rownames(cells) <- cell.names

    features <- data.frame(
        Gene = gene.names,
        DEStatus = de.status,
        FoldChange = foldchanges
    )
    rownames(features) <- gene.names

    sim <- SingleCellExperiment(
        assays = list(counts = counts),
        rowData = features,
        colData = cells,
        metadata = list(Params = params)
    )

    if (sparsify) {
        if (verbose) {
            message("Sparsifying assays...")
        }
        assays(sim) <- sparsifyMatrices(assays(sim),
            auto = TRUE,
            verbose = verbose
        )
    }

    if (verbose) {
        message("Done!")
    }

    return(sim)
}
Oshlack/splatter documentation built on Dec. 10, 2024, 3:48 p.m.