R/pheno-simulate.R

Defines functions phenoSimulate

Documented in phenoSimulate

#' PhenoPath simulation
#'
#' Simulate counts from a pseudotime trajectory using the PhenoPath method.
#'
#' @param params PhenoParams object containing simulation parameters.
#' @param sparsify logical. Whether to automatically convert assays to sparse
#'        matrices if there will be a size reduction.
#' @param verbose logical. Whether to print progress messages
#' @param ... any additional parameter settings to override what is provided in
#'        \code{params}.
#'
#' @details
#' This function is just a wrapper around
#' \code{\link[phenopath]{simulate_phenopath}} that takes a
#' \code{\link{PhenoParams}}, runs the simulation then converts the
#' output from log-expression to counts and returns a
#' \code{\link[SingleCellExperiment]{SingleCellExperiment}} object. The original
#' simulated log-expression values are returned in the \code{LogExprs} assay.
#' See \code{\link[phenopath]{simulate_phenopath}} and the PhenoPath paper for
#' more details about how the simulation works.
#'
#' @return SingleCellExperiment containing simulated counts
#'
#' @references
#' Campbell K, Yau C. Uncovering genomic trajectories with heterogeneous genetic
#' and environmental backgrounds across single-cells and populations. bioRxiv
#' (2017).
#'
#' Paper: \url{10.1101/159913}
#'
#' Code: \url{https://github.com/kieranrcampbell/phenopath}
#'
#' @examples
#' if (requireNamespace("phenopath", quietly = TRUE)) {
#'     sim <- phenoSimulate()
#' }
#' @export
#' @importFrom SingleCellExperiment SingleCellExperiment
phenoSimulate <- function(params = newPhenoParams(), sparsify = TRUE,
                          verbose = TRUE, ...) {
    checkmate::assertClass(params, "PhenoParams")
    params <- setParams(params, ...)

    # Set random seed
    seed <- getParam(params, "seed")
    # Get the parameters we are going to use
    nCells <- getParam(params, "nCells")
    nGenes <- getParam(params, "nGenes")
    n.de <- getParam(params, "n.de")
    n.pst <- getParam(params, "n.pst")
    n.pst.beta <- getParam(params, "n.pst.beta")
    n.de.pst.beta <- getParam(params, "n.de.pst.beta")

    withr::with_seed(seed, {
        if (verbose) {
            message("Simulating counts...")
        }
        pheno.sim <- phenopath::simulate_phenopath(
            N = nCells,
            G_de = n.de,
            G_pst = n.pst,
            G_pst_beta = n.pst.beta,
            G_de_pst_beta = n.de.pst.beta
        )
    })

    if (verbose) {
        message("Creating final dataset...")
    }
    cell.names <- paste0("Cell", seq_len(nCells))
    gene.names <- paste0("Gene", seq_len(nGenes))

    exprs <- t(pheno.sim$y)
    counts <- 2^exprs - 1
    counts[counts < 0] <- 0
    counts <- round(counts)
    rownames(counts) <- gene.names
    colnames(counts) <- cell.names

    cells <- data.frame(
        Cell = cell.names,
        Covariate = pheno.sim$x,
        Pseudotime = pheno.sim$z
    )
    rownames(cells) <- cell.names

    features <- data.frame(
        Gene = gene.names,
        Alpha = pheno.sim$parameters$alpha,
        Lambda = pheno.sim$parameters$lambda,
        Beta = pheno.sim$parameters$beta,
        Regime = pheno.sim$parameters$regime
    )
    rownames(features) <- gene.names

    sim <- SingleCellExperiment(
        assays = list(
            counts = counts,
            LogExprs = exprs
        ),
        rowData = features,
        colData = cells,
        metadata = list(Params = params)
    )

    if (sparsify) {
        if (verbose) {
            message("Sparsifying assays...")
        }
        assays(sim) <- sparsifyMatrices(
            assays(sim),
            auto = TRUE,
            verbose = verbose
        )
    }

    return(sim)
}
Oshlack/splatter documentation built on Dec. 10, 2024, 3:48 p.m.