#' Estimate mfa simulation parameters
#'
#' Estimate simulation parameters for the mfa simulation from a real dataset.
#'
#' @param counts either a counts matrix or a SingleCellExperiment object
#' containing count data to estimate parameters from.
#' @param params MFAParams object to store estimated values in.
#'
#' @details
#' The \code{nGenes} and \code{nCells} parameters are taken from the size of the
#' input data. The dropout lambda parameter is estimate using
#' \code{\link[mfa]{empirical_lambda}}. See \code{\link{MFAParams}} for more
#' details on the parameters.
#'
#' @return MFAParams object containing the estimated parameters.
#'
#' @examples
#' # Load example data
#' if (requireNamespace("mfa", quietly = TRUE)) {
#' library(mfa)
#' synth <- create_synthetic(
#' C = 20, G = 5, zero_negative = TRUE,
#' model_dropout = TRUE
#' )
#'
#' params <- mfaEstimate(synth$X)
#' params
#' }
#' @export
mfaEstimate <- function(counts, params = newMFAParams()) {
UseMethod("mfaEstimate")
}
#' @rdname mfaEstimate
#' @export
mfaEstimate.SingleCellExperiment <- function(counts,
params = newMFAParams()) {
counts <- getCounts(counts)
mfaEstimate(counts, params)
}
#' @rdname mfaEstimate
#' @export
mfaEstimate.matrix <- function(counts, params = newMFAParams()) {
checkmate::assertClass(params, "MFAParams")
dropout.lambda <- mfa::empirical_lambda(t(counts))
params <- setParams(
params,
nGenes = nrow(counts),
nCells = ncol(counts),
dropout.lambda = dropout.lambda
)
return(params)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.