knitr::opts_chunk$set(echo = TRUE) library(MetClassNetR) library(MsCoreUtils) library(tidyverse) library(dplyr) library(QFeatures)
This vignette aims to compare different mapping strategies included in the package. For a description how to generate a multilayer network see vignette MultiLayerNetwork.
For this Vignettes we use data from MTBLS1586.
# load("../VariablesFromVignette.RData") path <- "extdata/MTBLS1586/" exp <- "MTBLS1586_LC-MS_positive_reverse-phase_metabolite_profiling" inputData <- loadInputData( peakListF = system.file( paste0(path, "m_", exp, "_v2_maf.tsv"), package = "MetClassNetR" ), transF = system.file( paste0(path, "transformations_MTBLS1586.csv"), package = "MetClassNetR" ), spectraF = system.file( paste0(path, "ms2_", exp, ".mgf"), package = "MetClassNetR" ), gsmnF = system.file( paste0(path, "WormJam-GEM-20190101_L3_no-side_no-comp.gml"), package = "MetClassNetR" ), resPath = "~/MetClassNetR_MultiLayerNetwork/", met2NetDir = paste0( find.package("MetClassNetR"), "/Python/metabolomics2network-master/" ), configF = system.file( paste0(path, "Metabolomics2NetworksData/JsonConf.txt"), package = "MetClassNetR" ), idenMetF = system.file( paste0( path, "Metabolomics2NetworksData/IdentifiedMet_", exp, "_v2_maf.tsv" ), package = "MetClassNetR" ), metF = system.file( paste0(path, "Metabolomics2NetworksData/WormJamMetWithMasses.tsv"), package = "MetClassNetR" ), cleanMetF = FALSE )
resFile <- "Res_Met2Net_MappedMet.txt" mapMetToGSMN(inputData, resFile, method="metabolomics2network")
mapMetToGSMN(inputData, method="id_inchikey")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.