require(knitr) knitr::opts_chunk$set(collapse = TRUE, comment = "#>", fig.width = 10, fig.height = 6, fig.align = "center", tidy = FALSE, tidy.opts=list(width.cutoff=80), fig.keep = 'high', dpi=40)
# ==== set graphical parameters ================= # select the index of the spectrum that will be drawn spectrIndex <- 1 # colors col1 <- "gray18" col2 <- "firebrick1" library(PepsNMR)
This document provides a brief summary on how to use the r Biocpkg("PepsNMR")
package. In this package, pre-processing functions transform raw FID signals from 1H NMR spectroscopy into a set of interpretable spectra.
The r Biocpkg("PepsNMR")
package is available on Bioconductor and can be installed via BiocManager::install
:
if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install("PepsNMR", dependencies = c("Depends", "Imports", "Suggests"))
Note tha installing the Suggests
dependencies will install the r Biocpkg("PepsNMRData")
package to run the demo below.
The package needs to be loaded once installed to be used:
library(PepsNMR)
The package development version is available on Github (Master branch): https://github.com/ManonMartin/PepsNMR, although it is highly recommended to rely on the Bioconductor release version of the package to avoid any package version mismatch.
The first step is meant to access the raw data files. To import Free Induction Decays (FIDs) in Bruker format, use the ReadFids
function. This function will return a list with the FID data matrix (saved in Fid_data
) and metadata about these FIDs (saved in Fid_info
).
fidList <- ReadFids(file.path(path,dataset_name)) Fid_data <- fidList[["Fid_data"]] Fid_info <- fidList[["Fid_info"]]
The possible directory structures are illustrated here:
include_graphics("ReadFids.png")
And is to be linked with the possible options of the ReadFids
function:
subdirs = TRUE
, dirs.names = FALSE
subdirs = FALSE
, dirs.names = FALSE
subdirs = TRUE
, dirs.names = TRUE
subdirs = FALSE
, dirs.names = TRUE
Here is the recommended pre-processing workflow on the FIDs and the spectra once the raw data have been loaded in R:
Steps <- c("Group Delay Correction", "Solvent Suppression", "Apodization", "ZeroFilling", "Fourier Transform", "Zero Order Phase Correction", "Internal Referencing", "Baseline Correction", "Negative Values Zeroing", "Warping", "Window Selection", "Bucketing", "Region Removal", "Zone Aggregation", "Normalization") StepsDescr <- c("Correct for the Bruker Group Delay.", "Remove the solvent signal from the FIDs.", "Increase the Signal-to-Noise ratio of the FIDs.", "Improve the visual representation of the spectra.", "Transform the FIDs into a spectrum and convert the frequency scale (Hz -> ppm).", "Correct for the zero order phase dephasing.", "Calibrate the spectra with an internal reference compound. Referencing with an internal (e.g. TMSP at 0 ppm)", "Remove the spectral baseline.", "Set negatives values to 0.", "Warp the spectra according to a reference spectrum.", "Select the informative part of the spectrum.", "Data reduction.", "Set a desired spectral region to 0.", "Aggregate a spectral region into a single peak.", "Normalize the spectra.") StepsTable <- cbind(Steps = Steps, Description = StepsDescr) kable(StepsTable, caption = "Pre-processing steps. They are presented in the suggested order.")
Information on each function is provided in R, (e.g. type ?ReadFids
in the R console) and methodological details are found in @Martin2018.
Human serum (HS
) and urine (HU
) datasets are available as raw data (FIDs in Bruker format) and as (partially) pre-processed signals/spectra in the ad hoc r Biocpkg("PepsNMRData")
package that is automatically installed with r Biocpkg("PepsNMR")
(through ).
Here are examples of available datasets:
library(PepsNMRData) str(FidData_HU) str(FinalSpectra_HS)
Information for each dataset is available, (e.g. enter ?FidData_HS
in the R Console).
Raw Bruker FIDs can be loaded from where r Biocpkg("PepsNMRData")
has been intalled:
data_path <- system.file("extdata", package = "PepsNMRData") dir(data_path)
To import FIDs in Bruker format, the ReadFids
function is used. This function will return a list with the FID data matrix (here saved as Fid_data
) and information about these FIDs (here saved as Fid_info
).
# ==== read the FIDs and their metadata ================= fidList <- ReadFids(file.path(data_path, "HumanSerum")) Fid_data0 <- fidList[["Fid_data"]] Fid_info <- fidList[["Fid_info"]] kable(head(Fid_info))
time <- as.numeric(colnames(Fid_data0))*1000 plot(time, Re(Fid_data0[spectrIndex,]),type="l", col = col1, xlab= expression(paste("Time (", mu,"s)")), ylab = "Intensity", main = "Raw FID (real part)", ylim = c(-1e6,2e5))
The Bruker's digital filter originally produces a Group Delay that is removed during this step.
# ==== GroupDelayCorrection ================= Fid_data.GDC <- GroupDelayCorrection(Fid_data0, Fid_info)
par(mfrow=c(2,1)) plot(time[0:300], Re(Fid_data0[spectrIndex,0:300]), type = "l", ylab = "Intensity", xlab="", main = "FID with the Group Delay (real part - zoom)", col = col1) plot(time[0:300], Re(Fid_data.GDC[spectrIndex,0:300]), type="l", ylab = "Intensity", xlab=expression(paste("Time (", mu,"s)")), main="FID after Group Delay removal (real part - zoom)", col = col1)
Pre-acquisition techniques for solvent suppression can be unsufficient to remove the solvent signal from the FIDs. SolventSuppression
estimates and removes this residual solvent signal based on a Whittaker smoother.
# ==== SolventSuppression ================= SS.res <- SolventSuppression(Fid_data.GDC, returnSolvent=TRUE) Fid_data.SS <- SS.res[["Fid_data"]] SolventRe <- SS.res[["SolventRe"]]
par(mfrow=c(2,1)) plot(time[0:4000], Re(Fid_data.GDC[spectrIndex,0:4000]), col=col1, type="l", ylab = "Intensity", xlab="", main="FID and solvent residuals signal (real part - zoom)") lines(time[0:4000],SolventRe[spectrIndex,0:4000], col=col2 , lwd = 1.3) legend("topright", bty = "n", legend = c(expression(paste("Estimated solvent residuals signal ", (italic(W)))), expression(paste("FID signal ", (italic(S))))), col=c(col2, col1), lty = 1) plot(time[0:4000], Re(Fid_data.SS[1,0:4000]), col=col1, type="l", ylab = "Intensity", xlab=expression(paste("Time (", mu,"s)")), main="FID without solvent residuals signal (real part - zoom)") lines(time[0:4000], rep(0, 4000), col=col2)
The apodization step increases the spectral Signal-to-Noise ratio by multiplying the FIDs by an appropriate factor (by default a negative exponential).
# ==== Apodization ================= Fid_data.A <- Apodization(Fid_data.SS, Fid_info)
par(mfrow=c(2,1)) plot(time, Re(Fid_data.SS[spectrIndex,]), col=col1, type="l", ylab = "Intensity", xlab="", main="FID before Apodization") plot(time, Re(Fid_data.A[spectrIndex,]), col=col1, type="l", ylab = "Intensity", xlab=expression(paste("Time (", mu,"s)")), main="FID after Apodization")
The zero filling adds 0 to the end of the FIDs to improve the visual representation of spectra.
# ==== Zero Filling ================= Fid_data.ZF <- ZeroFilling(Fid_data.A, fn = ncol(Fid_data.A))
par(mfrow=c(2,1)) plot(time, Re(Fid_data.A[spectrIndex,]), col=col1, type="l", ylab = "Intensity", xlab="", main="FID before Zero Filling") time <- as.numeric(colnames(Fid_data.ZF))*1000 plot(time, Re(Fid_data.ZF[spectrIndex,]), col=col1, type="l", ylab = "Intensity", xlab=expression(paste("Time (", mu,"s)")), main="FID after Zero Filling")
The Fourier Transform is applied to the FIDs to obtain spectra expressed in the frequency domain. The FourierTransform
function further converts this frequency scale originally in hertz into parts per million (ppm).
# ==== FourierTransform ================= RawSpect_data.FT <- FourierTransform(Fid_data.ZF, Fid_info)
plot(Re(RawSpect_data.FT[spectrIndex,]), col=col1, xaxt="n", type="l", ylab = "Intensity", xlab = "ppm", main="Spectrum after Fourier Transform") at <- seq(1,dim(RawSpect_data.FT)[2], floor(dim(RawSpect_data.FT)[2]/10)) axis(side=1, at = at, labels = round(as.numeric(colnames(RawSpect_data.FT)[at]),2))
After Fourier Transform, the spectra need to be phased for the real part to be in pure absoptive mode (i.e. with positive intensities).
# ==== ZeroOrderPhaseCorrection ================= Spectrum_data.ZOPC <- ZeroOrderPhaseCorrection(RawSpect_data.FT) # with a graph of the criterion to maximize over 2pi Spectrum_data.ZOPC <- ZeroOrderPhaseCorrection(RawSpect_data.FT, plot_rms = "J1-D1-1D-T1")
plot(Re(Spectrum_data.ZOPC[spectrIndex,]), col=col1, xaxt="n", type="l", ylab = "Intensity", xlab = "ppm", main="Spectrum after Zero Order Phase Correction") at <- seq(1,dim(Spectrum_data.ZOPC)[2], floor(dim(Spectrum_data.ZOPC)[2]/10)) axis(side=1, at = at, labels = round(as.numeric(colnames(Spectrum_data.ZOPC)[at]),2))
During this step, the spectra are aligned with an internal reference compound (e.g. with the TMSP). The user determines the ppm value of the reference compound which is by default 0.
# ==== InternalReferencing ================= target.value <- 0 IR.res <- InternalReferencing(Spectrum_data.ZOPC, Fid_info, ppm.value = target.value, rowindex_graph = c(1,2)) # draws Peak search zone and location of the 2 first spectra IR.res$plots Spectrum_data.IR <- IR.res$Spectrum_data
ppmvalues <- as.numeric(colnames(Spectrum_data.IR)) plot(Re(Spectrum_data.IR[spectrIndex,]), col=col1, xaxt="n", type="l", ylab = "Intensity", xlab = "ppm", main="Spectrum after internal referencing") at <- seq(1,dim(Spectrum_data.IR)[2], floor(dim(Spectrum_data.IR)[2]/10)) axis(side=1, at = at, labels = round(ppmvalues[at],2)) index <- which(abs(ppmvalues-target.value) == min(abs(ppmvalues-target.value))) abline(v = index, col= col2) legend("topright", bty = "n", legend = "Peak location", col=col2, lty = 1)
The spectral baseline is estimated and removed from the spectral profiles with the Asymetric Least Squares smoothing algorithm.
# ==== BaselineCorrection ================= BC.res <- BaselineCorrection(Spectrum_data.IR, returnBaseline = TRUE, lambda.bc = 1e8, p.bc = 0.01)
par(mfrow=c(2,1)) Spectrum_data.BC <- BC.res[["Spectrum_data"]] Baseline <- BC.res[["Baseline"]] plot(Re(Spectrum_data.IR[spectrIndex,]), col=col1, xaxt="n", type="l", ylab = "Intensity", xlab = "", main="Spectrum before Baseline Correction") at <- seq(1,dim(Spectrum_data.IR)[2], floor(dim(Spectrum_data.IR)[2]/10)) axis(side=1, at = at, labels = round(ppmvalues[at],2)) lines(Baseline[,1], col=col2) legend("topright", bty = "n", legend = "Estimated baseline ", col = col2, lty = 1) plot(Re(Spectrum_data.BC[spectrIndex,]), col=col1, xaxt="n", type="l", ylab = "Intensity", xlab = "ppm", main="Spectrum after Baseline Correction") axis(side=1, at = at, labels = round(ppmvalues[at],2))
The remaining negative values are set to 0 since they cannot be interpreted.
# ==== NegativeValuesZeroing ================= Spectrum_data.NVZ <- NegativeValuesZeroing(Spectrum_data.BC)
plot(Re(Spectrum_data.NVZ[spectrIndex,]), col=col1, xaxt="n", type="l", ylab = "Intensity", xlab = "ppm", main="Spectrum after Negative Values Zeroing") axis(side=1, at = at, labels = round(ppmvalues[at],2))
The spectra are realigned based on a reference spectrum with a Semi-Parametric Time Warping technique.
# ==== Warping ================= W.res <- Warping(Spectrum_data.NVZ, returnWarpFunc = TRUE, reference.choice = "fixed") Spectrum_data.W <- W.res[["Spectrum_data"]] warp_func <- W.res[["Warp.func"]]
par(mfrow=c(2,1)) f <- c(21, 20, 24) # warped spectra index to draw fen <- c(35560:36480) # x-window ylim <- c(0, max(c(Re(Spectrum_data.NVZ[c(1, f),fen]), Re(Spectrum_data.W[c(spectrIndex, f),fen])))) # Unwarped spectra plot(Re(Spectrum_data.NVZ[1, fen]), xaxt = "n", col=col2, ylab = "Intensity",ylim=ylim, type="l", xlab="ppm", main="Spectra before warping (real part - zoom)") legend("topright", bty = "n", y.intersp = 0.8,legend=c("Unwarped spectra","Ref. spectrum "), lty = c(1,1), col=c(col1,col2)) axis(side=1, at = seq(1,length(fen), 114), labels = round(as.numeric(colnames(Spectrum_data.NVZ[,fen])[seq(1,length(fen), 114)]),2)) for (j in f) { graphics::lines(Re(Spectrum_data.NVZ[j,fen]), col=col1, type="l") } # Warped spectra plot(Re(Spectrum_data.W[1, fen]), col=col2, xaxt = "n",ylab = "Intensity",ylim=ylim, type="l", xlab="ppm", main="Warped spectra (real part - zoom)") legend("topright", bty = "n", y.intersp = 0.8, legend=c("Warped spectra ","Ref. spectrum "), lty = c(1,1), col=c(col1,col2)) axis(side=1, at = seq(1,length(fen), 114), labels = round(as.numeric(colnames(Spectrum_data.NVZ[,fen])[seq(1,length(fen), 114)]),2)) for (j in f) { graphics::lines(Re(Spectrum_data.W[j,fen]), col=col1, type="l") }
During this step the user selects the part of the spectrum that is of interest and the other parts are removed from the spectral matrix.
# ==== WindowSelection ================= Spectrum_data.WS <- WindowSelection(Spectrum_data.W, from.ws = 10, to.ws = 0.2)
at <- seq(1,dim(Spectrum_data.WS)[2], floor(dim(Spectrum_data.WS)[2]/10)) ppmvalues <- as.numeric(colnames(Spectrum_data.WS)) plot(Re(Spectrum_data.WS[spectrIndex,]), col = col1, xaxt = "n", type = "l", ylab = "Intensity", xlab = "ppm", main = "Spectrum after Window Selection") axis(side = 1, at = at, labels = round(ppmvalues[at],2))
The Bucketing
function reduces the number of spectral descriptors by aggregating intensities into a series of buckets.
# ==== Bucketing ================= Spectrum_data.B <- Bucketing(Spectrum_data.WS, intmeth = "t")
par(mfrow=c(2,1)) at <- seq(1,dim(Spectrum_data.WS)[2], floor(dim(Spectrum_data.WS)[2]/10)) ppmvalues <- as.numeric(colnames(Spectrum_data.WS)) plot(Re(Spectrum_data.WS[spectrIndex,]), col = col1, xaxt = "n", type = "l", ylab = "Intensity", xlab = "", main = "Spectrum before Bucketing") axis(side = 1, at = at, labels = round(ppmvalues[at],2)) at <- seq(1,dim(Spectrum_data.B)[2], floor(dim(Spectrum_data.B)[2]/10)) ppmvalues <- as.numeric(colnames(Spectrum_data.B)) plot(Re(Spectrum_data.B[spectrIndex,]), col = col1, xaxt = "n", type = "l", ylab = "Intensity", xlab = "ppm", main = "Spectrum after Bucketing") axis(side = 1, at = at, labels = round(ppmvalues[at],2))
By default, this step sets to zero spectral areas that are of no interest or have a sigificant and unwanted amount of variation (e.g. the water area).
# ==== RegionRemoval ================= Spectrum_data.RR <- RegionRemoval(Spectrum_data.B, typeofspectra = "serum")
plot(Re(Spectrum_data.RR[spectrIndex,]), col = col1, xaxt = "n", type = "l", ylab = "Intensity", xlab = "ppm", main = "Spectrum after Region Removal") axis(side = 1, at = at, labels = round(ppmvalues[at],2))
The normalization copes with the dilution factor and other issues that render the spectral profiles non-comparable to each other.
# ==== Normalization ================= Spectrum_data.N <- Normalization(Spectrum_data.RR, type.norm = "mean")
par(mfrow=c(2,1)) plot(Re(Spectrum_data.RR[spectrIndex,]), col = col1, xaxt = "n", type = "l", ylab = "Intensity", xlab = "ppm", main = "Spectrum before Normalization") axis(side = 1, at = at, labels = round(ppmvalues[at],2)) lines(Re(Spectrum_data.RR[2,]), col = "blue") lines(Re(Spectrum_data.RR[3,]), col = "green") plot(Re(Spectrum_data.N[spectrIndex,]), col = col1, xaxt = "n", type = "l", ylab = "Intensity", xlab = "ppm", main = "Spectrum after Normalization") axis(side = 1, at = at, labels = round(ppmvalues[at],2)) lines(Re(Spectrum_data.N[2,]), col = "blue") lines(Re(Spectrum_data.N[3,]), col = "green")
Note: the function ZoneAggregation
is not used here, but is can be applied e.g. to urine spectra to aggregate the citrate peak.
The Draw
function enables to produce line plots with type.draw = "signal"
or PCA results with type.draw = "pca"
of FIDs or spectra. These plots can be saved as pdf files with the option output = "pdf"
, see ?Draw
, ?DrawSignal
and ?DrawPCA
for more details on the other available options.
Draw(Spectrum_data.N[1:4,], type.draw = c("signal"), subtype= "stacked", output = c("default"))
Draw(Spectrum_data.N, type.draw = c("pca"), output = c("default"), Class = Group_HS, type.pca = "scores")
Draw(Spectrum_data.N, type.draw = c("pca"), output = c("default"), Class = Group_HS, type.pca = "loadings")
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.