knitr::opts_chunk$set(cache = T)
-- An R package of High-resolution Informatics Toolbox for Maldi-imaging Proteomics
Find our published research article on Nature Communications:
https://doi.org/10.1038/s41467-021-23461-w
Maintainer: George Guo george.guo@auckland.ac.nz
About us:
Mass Spectrometry Hub | University of Auckland
Cancer research theme | Garvan Institute of Medical Research
MSRC Schey lab | Vanderbilt University
This is a tutorial for the use of HiTMaP (An R package of High-resolution Informatics Toolbox for Maldi-imaging Proteomics). User's may run HiTMaP using Docker, or through R console, however Docker is recommended to avoid issues with package dependency.
HiTMaP has been encapsulated into a docker image. After a proper installation and configuration of Docker engine (Docker documentation), user's can download the latest version of HiT-MaP by using the bash code as below.
```{bash eval=FALSE, include=T} docker pull mashuoa/hitmap
Tags of available docker images: 1. **mashuoa/hitmap:latest** contains the stable build release (built from the Dockerfile at MASHUOA/hitmap_docker with the effort from John Reeves <j.reeves@garvan.org.au>). 2. **mashuoa/hitmap:natcomms** contains the original version when this project been accepted (minor changes applied to enhance the multi-files cluster image rendering). 3. **mashuoa/hitmap:gui_latest** contains the developing graphical user interface of HiTMaP. Please map the 3838 port to the container and access the GUI via http://localhost:3838/. We are happy to hear your voice regarding the High-RES IMS pre-processing, segmentation and annotation as well as their corresponding GUI configurations. 4. We are able to supply a singularity template to the users who want to deploy the HiTMaP on an HPC server. This scripts also are available at the MASHUOA/hitmap/dockerfiles. Setting up and running the docker container: ```{bash eval=FALSE, include=T} # For windows user's, run the image with a local user\Documents\expdata folder mapped to the docker container: docker run --name hitmap -v %userprofile%\Documents\expdata:/root/expdata -a stdin -a stdout -i -t mashuoa/hitmap /bin/bash # For linux or mac user's, run the image with a local user/expdata folder mapped to the docker container: docker run --name hitmap -v ~/expdata:/root/expdata -a stdin -a stdout -i -t mashuoa/hitmap /bin/bash #Run the R console R
Revoke Docker terminal:
```{bash eval=FALSE, include=T}
docker restart hitmap docker container exec -it hitmap /bin/bash
Stop/remove docker container (warning: if no local disk is mapped to "\~/expdata", please backup your existing result files from the container before you remove it): ```{bash eval=FALSE, include=T} docker stop hitmap docker rm hitmap
If you are using docker GUI, pull the docker image using the codes above and follow the image as below to setup the container. if you are using mashuoa/hitmap:shiny_server, please also map local host:3838 to the container (Ports -> local hosts -> 3838).
The code below is used for an experienced R user to build a local R/HiTMaP running environment. Major dependencies to note:
#install the git package install.packages("remotes") install.packages("devtools") install.packages("BiocManager") #library(devtools) library(remotes) Sys.setenv("R_REMOTES_NO_ERRORS_FROM_WARNINGS" = "true") options(install.packages.check.source = "no") BiocManager::install(c( "XVector", "Biostrings", "KEGGREST","cleaver"),INSTALL_opts="-Wno-error") BiocManager::install(c("EBImage","Rdisop")) remotes::install_github("MASHUOA/HiTMaP",force=T,build_opts = c("--no-resave-data", "--no-manual","-Wno-error", "--no-build-vignettes"),configure.vars="CFLAGS= -O3 -Wall -mtune=native -march=native -Wno-error",ask = F) #Update all dependencies BiocManager::install(ask = F) library(HiTMaP)
Run the codes as below to enable the required components in Linux console.
```{bash eval=FALSE, include=T} function apt_install() { if ! dpkg -s "$@" >/dev/null 2>&1; then if [ "$(find /var/lib/apt/lists/* | wc -l)" = "0" ]; then apt-get update fi apt-get install -y --allow-downgrades --no-install-recommends "$@" fi }
apt_install \ sudo \ gdebi-core \ libcairo2=1.18.0-1+b1 \ libcairo-script-interpreter2=1.18.0-1+b1 \ lsb-release \ libcurl4-openssl-dev \ libcairo2-dev \ libxt-dev \ xtail \ wget \ default-jdk \ libxml2-dev \ libssl-dev \ libudunits2-dev \ librsvg2-dev \ libmagick++-dev \ r-cran-ncdf4 \ libz-dev \ libnss-winbind \ winbind \ dirmngr \ gnupg \ apt-transport-https \ ca-certificates \ software-properties-common \ libfftw3-dev \ texlive \ libgdal-dev \ ghostscript \ g++
## Codes for Mac OS building enviornment (optional) The following code is for a local GUI purpose. Hitmap now has been built on the shiny server system. You can skip this step in the later version. You may need to update the Xcode. Go to your Mac OS terminal and input: ```{bash eval=FALSE, include=T} xcode-select --install
You'll then receive: xcode-select: note: install requested for command line developer tools You will be prompted at this point in a window to update Xcode Command Line tools.
You may also need to install the X11.app and tcl/tk support for Mac system:
X11.app: https://www.xquartz.org/
Use the following link to download and install the correct tcltk package for your OS version. https://cran.r-project.org/bin/macosx/tools/
The HitMaP comes with a series of maldi-imaging datasets acquired by FT-ICR mass spectromety. With the following code, you can download these raw data set into a local folder.
You can download the example data manually through this link: "https://github.com/MASHUOA/HiTMaP/releases/download/1.0.1/Data.tar.gz"
Or download the files in a R console:
if(!require(piggyback)) install.packages("piggyback") library(piggyback) #made sure that this folder has enough space wd="~/expdata/" dir.create(wd) setwd(wd) pb_download("HiTMaP-master.zip", repo = "MASHUOA/HiTMaP", dest = ".",show_progress = F, tag="1.0.1") pb_download("Data.tar.gz", repo = "MASHUOA/HiTMaP", dest = ".") untar('Data.tar.gz',exdir =".", tar="tar") #unlink('Data.tar.gz') list.dirs()
The example data contains three folders for three individual IMS datasets, which each contain a configuration file, and the fasta database, respectively: "./Bovinlens_Trypsin_FT" "./MouseBrain_Trypsin_FT" "./Peptide_calibrants_FT"
An Tiny version of data set is also available by using the code below:
if(!require(piggyback)) install.packages("piggyback") library(piggyback) #made sure that this folder has enough space wd="~/expdata/" dir.create(wd) setwd(wd) pb_download("Data_tiny.tar.gz", repo = "MASHUOA/HiTMaP", dest = ".") untar('Data_tiny.tar.gz',exdir =".", tar="tar") #unlink('Data.tar.gz') list.dirs()
The tiny version dataset was generated from the Bovinlens and MouseBrain original data:
m/z range: 700 - 1400
pixel range:
x <= 20%, y >= 80% (Bovinlens)
x <= 30%, y <= 20% (MouseBrain)
To perform false-discovery rate controlled peptide and protein annotation, run the following script below in your R session:
#create candidate list library(HiTMaP) #set project folder that contains imzML, .ibd and fasta files #wd=paste0(file.path(path.package(package="HiTMaP")),"/data/") #set a series of imzML files to be processed datafile=c("Bovinlens_Trypsin_FT/Bovin_lens.imzML") wd="~/expdata/" preprocess = list(force_preprocess=TRUE, use_preprocessRDS=FALSE, smoothSignal=list(method = c("Disable", "gaussian", "sgolay", "ma")[1]), reduceBaseline=list(method = c("Disable", "locmin", "median")[1]), peakPick=list(method=c("diff", "sd", "mad", "quantile", "filter", "cwt")[3]), peakAlign=list(tolerance=5, units="ppm", level=c("local","global")[1], method=c("Enable","Disable")[1]), normalize=list(method=c("Disable","rms","tic","reference")[1], mz=NULL) ) imaging_identification( #==============Choose the imzml raw data file(s) to process make sure the fasta file in the same folder datafile=paste0(wd,datafile), threshold=0.005, ppm=5, FDR_cutoff = 0.05, #==============specify the digestion enzyme specificity Digestion_site="trypsin", #==============specify the range of missed Cleavages missedCleavages=0:1, #==============Set the target fasta file Fastadatabase="uniprot-bovin.fasta", #==============Set the possible adducts and fixed modifications adducts=c("M+H"), Modifications=list(fixed=NULL,fixmod_position=NULL,variable=NULL,varmod_position=NULL), #==============The decoy mode: could be one of the "adducts", "elements" or "isotope" Decoy_mode = "isotope", use_previous_candidates=F, output_candidatelist=T, #==============The pre-processing param preprocess=preprocess, #==============Set the parameters for image segmentation spectra_segments_per_file=4, Segmentation="spatialKMeans", Smooth_range=1, Virtual_segmentation=FALSE, Virtual_segmentation_rankfile=NULL, #==============Set the Score method for hi-resolution isotopic pattern matching score_method="SQRTP", peptide_ID_filter=2, #==============Summarise the protein and peptide features across the project the result can be found at the summary folder Protein_feature_summary=TRUE, Peptide_feature_summary=TRUE, Region_feature_summary=TRUE, #==============The parameters for Cluster imaging. Specify the annotations of interest, the program will perform a case-insensitive search on the result file, extract the protein(s) of interest and plot them in the cluster imaging mode plot_cluster_image_grid=FALSE, ClusterID_colname="Protein", componentID_colname="Peptide", Protein_desc_of_interest=c("Crystallin","Actin"), Rotate_IMG=NULL, )
In the above function, you have performed proteomics analysis on the sample data file. It is a tryptic Bovin lens MALDI-imaging file which is acquired on an FT-ICR MS. The function will take the selected data files' root directory as the project folder. In this example, the project folder will be:
library(HiTMaP) wd=paste0("D:\\GITHUB LFS\\HiTMaP-Data\\inst","/data/Bovinlens_Trypsin_FT/") datafile=c("Bovin_lens")
After the whole identification process, you will get two sub-folders within the project folder:
list.dirs(wd, recursive=FALSE)
The one which has an identical name to an input data file contains the identification result of that input:
"Summary folder" contains:
To plot the MALDI-image peptide and protein images, use the following functions:
To check the segmentation result over the sample, you need to navigate to each data file ID folder and find the "spatialKMeans_image_plot.png" (if you are using the spatial K-means method for segmentation.)
library(magick) p<-image_read(paste0(wd,datafile," ID/spatialKMeans_image_plot.png")) print(p)
The pixels in image data now has been categorized into four regions according to the initial setting of segmentation (spectra_segments_per_file=5). The rainbow shaped bovine lens segmentation image (on the left panel) shows a unique statistical classification based on the mz features of each region (on the right panel).
The mouse brain example segmentation result (spatialKmeans n=9) shown as below:
For further investigation of the segmentation process, you may find a PCA images set in the "Datafile ID" folder. THe PCA images are good summary of features and potential region of interests within a data file. The combination of these PCs of interest will guide you to the insightful tissue structure profile.
The identification will take place on the mean spectra of each region. To check the peptide mass fingerprint (PMF) matching quality, you could locate the PMF spectrum matching plot of each individual region.
library(magick) p_pmf<-image_read(paste0(wd,datafile," ID/Bovin_lens 3PMF spectrum match.png")) print(p_pmf)
A list of the peptides and proteins annotated within each region has also been created for manual exploration of the results.
peptide_pmf_result<-read.csv(paste0(wd,datafile," ID/Peptide_segment_PMF_RESULT_3.csv")) head(peptide_pmf_result)
protein_pmf_result<-read.csv(paste0(wd,datafile," ID/Protein_segment_PMF_RESULT_3.csv")) head(protein_pmf_result)
Score in peptide result table shows the isotopic pattern matching score of the peptide (Pepscore). In Protein result table, it shows the protein score (Proscore). The 'Pepscore' consist of two parts: Intensity_Score and Mass_error_Score:
Intensity_Score indicates how well a putative isotopic pattern can be matched to the observed spectrum.The default scoring method is SQRTP. It combines the 'square root mean' differences between observed and theoretical peaks and observed proportion of the isotopic peaks above a certain relative intensity threshold.
Mass_error_Score indicates the summary of mass error (in ppm) for every detected isotopic peak. In order to integrate the Mass_error_Score in to scoring system, the mean ppm error has been normalized by ppm tolerance, and supplied to the probability normal distributions (pnorm function for R). The resulting value (quantiles of the given probability density) is deducted by 0.5 and converted into an absolute value.
Proscore in the protein result table shows the overall estimation of the protein identification Accuracy.
A Peptide_region_file.csv has also been created to summarise all the IDs in this data file:
Identification_summary_table<-read.csv(paste0(wd,datafile," ID/Peptide_region_file.csv")) head(Identification_summary_table)
The details of protein/peptide identification process has been save to the folder named by the segmentation:
list.dirs(paste0(wd,datafile," ID/"), recursive=FALSE)
In the identification details folder, you will find a series of FDR file and plots to demonstrate the FDR model and score cutoff threshold:
dir(paste0(wd,datafile," ID/1/"), recursive=FALSE)
In this folder, you will find the FDR plots for protein and peptide annotation. The software will take the proscore and its FDR model to trim the final identification results. The unique_peptide_ranking_vs_mz_feature.png is a plot that could tell you the number of peptide candidates that have been matched to the mz features in the first round run. You can also access the peptide spectrum match (first MS dimension) data via the "/ppm" subfolder.
library(magick) p_FDR_peptide<-image_read(paste0(wd,datafile," ID/3/FDR.png")) p_FDR_protein<-image_read(paste0(wd,datafile," ID/3/protein_FDR.png")) p_FDR_peptide_his<-image_read(paste0(wd,datafile," ID/3/Peptide_Score_histogram_target-decoy.png")) p_FDR_protein_his<-image_read(paste0(wd,datafile," ID/3/PROTEIN_Score_histogram.png")) p_combined<-image_append(c(p_FDR_peptide,p_FDR_peptide_his,p_FDR_protein,p_FDR_protein_his)) print(p_combined)
You will also find a Matching_Score_vs_mz plot for further investigation on peptide matching quality.
library(magick) #plot Matching_Score_vs_mz p_Matching_Score_vs_mz<-image_read(paste0(wd,datafile," ID/3/Matching_Score_vs_mz_target-decoy.png")) print(p_Matching_Score_vs_mz)
In the project summary folder, you will find four files and a sub-folder:
wd_sum=paste(wd,"/Summary folder", sep="") dir(wd_sum)
"candidatelist.csv" and "protein_index.csv" contains the candidates used for this analysis. They are output after the candidate processing while output_candidatelist set as TRUE, and can be used repeatedly while use_previous_candidates set as TRUE.
We have implemented a functionality to perform additional statistical analysis around the number of enzymatically generated peptides derived from a given proteome database. If the user sets the argument 'Database_stats' to TRUE in the main workflow, the function will be called. Briefly, the function will list all of the m/z's of a unique formulae from the peptide candidate pool within a given m/z range. The m/z's will then be binned using three tolerance window: 1 ppm, 2 ppm and 5 ppm. A plot showing the number of unique formulae vs. m/z bins will be generated and exported to the summary folder (DB_stats_mz_bin).
"Peptide_Summary.csv" and "Protein_Summary.csv" contains the table of the project identification summary. You could set the plot_cluster_image_grid as TRUE to enable the cluster imaging function. Please be noted that you could indicate Rotate_IMG with a CSV file path that indicates the rotation degree of image files.
Note: 90°, 180° and 270° are recommended for image rotation. You may find an example CSV file in the expdata/MouseBrain_Trypsin_FT/file_rotationbk.csv.
library(dplyr) Protein_desc_of_interest<-c("Crystallin","Actin") Protein_Summary_tb<-read.csv(paste(wd,"/Summary folder","/Protein_Summary.csv", sep=""),stringsAsFactors = F)
Finally, you are able visualize the annotated proteins and their associated peptide distributions via the cluster image rendering function.
vimentin:
library(magick) p_cluster4<-image_read(paste0("~/expdata/Bovinlens_Trypsin_FT/Summary folder/cluster Ion images/unique/452_cluster_imaging.png")) print(p_cluster4)
β-crystallin:
p_cluster1<-image_read(paste0("~/expdata/Bovinlens_Trypsin_FT/Summary folder/cluster Ion images/unique/791_cluster_imaging.png")) print(p_cluster1)
α-crystallin:
p_cluster3<-image_read(paste0("~/expdata/Bovinlens_Trypsin_FT/Summary folder/cluster Ion images/unique/5479_cluster_imaging.png")) print(p_cluster3)
Secernin 1
p_cluster3<-image_read(paste0("~/expdata/MouseBrain_Trypsin_FT/Summary folder/cluster Ion images/unique/2823_cluster_imaging.png")) print(p_cluster3)
CX6A1 cytochrome coxidase subunit 6A1
p_cluster3<-image_read(paste0("~/expdata/MouseBrain_Trypsin_FT/Summary folder/cluster Ion images/unique/16305_cluster_imaging.png")) print(p_cluster3)
Myelin basic protein
p_cluster3<-image_read(paste0("~/expdata/MouseBrain_Trypsin_FT org rds/Summary folder/cluster Ion images/unique/9585_cluster_imaging.png")) print(p_cluster3)
export_pixel_level_data(Protein_peptide_file=, IMS_data_file=list(), tolerance=, )
You can choose one or a list of modifications from the unimod modification list. Peptide_modification function is used to load/rebuild the modification database into the global enviornment of R. It will be called automatically in the identification work flow. you can use the code_name or record_id to refer the modification (see example data "peptide calibrants" to find more details). The pipeline will select the non-hidden modifications.
HiTMaP:::Peptide_modification(retrive_ID=NULL,update_unimod=F) modification_list<-merge(unimod.df$modifications,unimod.df$specificity,by.x=c("record_id"),by.y=c("mod_key"),all.x=T) head(modification_list['&'(modification_list$code_name=="Phospho",modification_list$hidden!=1),c("code_name","record_id","composition","mono_mass","position_key","one_letter")]) head(modification_list['&'(modification_list$code_name=="Amide",modification_list$hidden!=1),c("code_name","record_id","composition","mono_mass","position_key","one_letter")]) head(modification_list['&'(stringr::str_detect(modification_list$code_name,"Ca"),modification_list$hidden!=1),c("code_name","record_id","composition","mono_mass","position_key","one_letter")])
If a modification occurs on a particular site, you will also need to specify the position of a modifications.
unimod.df[["positions"]]
You can set the Substitute_AA to make the uncommon amino acid available to the workflow: Substitute_AA=list(AA=c("X"),AA_new_formula=c("C5H5NO2"),Formula_with_water=c(FALSE))
The Digestion_site allows you to specify a list of pre-defined enzyme and customized digestion rules in regular expression format. You can either use the enzyme name, customized cleavage rule or combination of them to get the enzymatics peptides list.
grid.ftable <- function(d, padding = unit(2, "mm"), ...) { library(gridExtra) library(grid) nc <- ncol(d) nr <- nrow(d) # character table with added row and column names extended_matrix <- cbind(c("", rownames(d)), rbind(colnames(d), as.matrix(d))) # string width and height w <- apply(extended_matrix, 2, strwidth, "inch") h <- apply(extended_matrix, 2, strheight, "inch") widths <- apply(w, 2, max) heights <- apply(h, 1, max) padding <- convertUnit(padding, unitTo = "in", valueOnly = TRUE) x <- cumsum(widths + padding) - 0.5 * padding y <- cumsum(heights + padding) - padding rg <- rectGrob(x = unit(x - widths/2, "in"), y = unit(1, "npc") - unit(rep(y, each = nc + 1), "in"), width = unit(widths + padding, "in"), height = unit(heights + padding, "in")) tg <- textGrob(c(t(extended_matrix)), x = unit(x - widths/2, "in"), y = unit(1, "npc") - unit(rep(y, each = nc + 1), "in"), just = "center") g <- gTree(children = gList(rg, tg), ..., x = x, y = y, widths = widths, heights = heights) grid.draw(g) invisible(g) }
Cleavage_rules<-Cleavage_rules_fun() Cleavage_df<-data.frame(Enzyme=names(Cleavage_rules),Cleavage_rules=unname(Cleavage_rules),stringsAsFactors = F) library(gridExtra) grid.ftable(Cleavage_df, gp = gpar(fontsize=9,fill = rep(c("grey90", "grey95"))))
preprocess$mz_bin_list is an argument for costumized peak-picking and mz bining purpose. If it is not NULL, the workflow will bypass signal smooth, noise reduction, and peakpicking steps. User need to give a numeric vector as the mz input to this argument. The workflow will first filter the vector with the given ppm tolerance to ensure there's no overlapped mz bins (mz +/- ppm tolerance). Then, a m/z binning procedure will be conducted to the image data to produce a peak-picked dataset (the peak bin width will be the ppm tolerance).
If user uses a processed IMS data that contains the centroid feature value (e.g. exported from scils lab with feature list reduced data). User will still be safe to use this mz_bin_list in order to mount the centroid data properly. In this case, the ppm tolerance will only applied to the following annotation procedure.
normalize=list(method=c("Disable","rms","tic","reference")[1],mz=1) the current IMS normalization is done on pixel-to-pixel level, which will affect the feature distribution in some tissue. We use "Disable" in the example dataset to minimize the required RAM space and working time. The step may result in a big RAM usage on some IMS data. If the error message mentioned a "vector allocation" issue, Please consider to disable the normalization.
Below is a list of commands including the parameters for the example data sets.
#peptide calibrant library(HiTMaP) datafile=c("Peptide_calibrants_FT/trypsin_non-decell_w.calibrant_FTICR") wd="~/expdata/" # Calibrants dataset analysis with modification imaging_identification(datafile=paste0(wd,datafile), Digestion_site="trypsin", Fastadatabase="uniprot_cali.fasta", output_candidatelist=T, plot_matching_score=T, spectra_segments_per_file=1, use_previous_candidates=F, peptide_ID_filter=1,ppm=5,missedCleavages=0:5, Modifications=list(fixed=NULL,fixmod_position=NULL,variable=c("Amide"),varmod_position=c(6)), FDR_cutoff=0.1, Substitute_AA=list(AA=c("X"),AA_new_formula=c("C5H5NO2"),Formula_with_water=c(FALSE))) # Calibrants dataset analysis with no modification imaging_identification(datafile=paste0(wd,datafile), Digestion_site="trypsin", Fastadatabase="uniprot_cali.fasta", output_candidatelist=T, plot_matching_score=T, spectra_segments_per_file=1, use_previous_candidates=T, peptide_ID_filter=1,ppm=5,missedCleavages=0:5, FDR_cutoff=0.1) library(HiTMaP) datafile=c("Peptide_calibrants_FT/trypsin_non-decell_w.calibrant_FTICR") wd="~/expdata/" # Calibrants dataset analysis with modification imaging_identification(datafile=paste0(wd,datafile), Digestion_site="trypsin", Fastadatabase="calibrants.fasta", output_candidatelist=T, plot_matching_score=T, spectra_segments_per_file=1, use_previous_candidates=F, peptide_ID_filter=1,ppm=5,missedCleavages=0:5, Modifications=list(fixed=NULL,fixmod_position=NULL,variable=c("Amide"),varmod_position=c(6)), FDR_cutoff=0.1, Substitute_AA=list(AA=c("X"),AA_new_formula=c("C5H5NO2"),Formula_with_water=c(FALSE)),Thread = 1)
library(HiTMaP) datafile=c("Bovinlens_Trypsin_FT/Bovin_lens.imzML") wd="~/expdata/" # Data pre-processing and proteomics annotation library(HiTMaP) imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin", Fastadatabase="uniprot-bovin.fasta",output_candidatelist=T, preprocess=list(force_preprocess=TRUE, use_preprocessRDS=TRUE, smoothSignal=list(method="Disable"), reduceBaseline=list(method="Disable"), peakPick=list(method="adaptive"), peakAlign=list(tolerance=5, units="ppm"), normalize=list(method=c("Disable","rms","tic","reference")[1],mz=1)), spectra_segments_per_file=4,use_previous_candidates=F,ppm=5,FDR_cutoff = 0.05,IMS_analysis=T, Rotate_IMG="file_rotationbk.csv",plot_cluster_image_grid=F) datafile=c("Bovinlens_Trypsin_FT/Bovin_lens.imzML") wd="~/expdata/" library(HiTMaP) imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin", Fastadatabase="uniprot-bovin.fasta",output_candidatelist=T,use_previous_candidates=T, preprocess=list(force_preprocess=F, use_preprocessRDS=TRUE, smoothSignal=list(method="Disable"), reduceBaseline=list(method="Disable"), peakPick=list(method="Default"), peakAlign=list(tolerance=5, units="ppm"), normalize=list(method=c("Disable","rms","tic","reference")[1],mz=1)), spectra_segments_per_file=4,ppm=5,FDR_cutoff = 0.05,IMS_analysis=T, Rotate_IMG="file_rotationbk.csv",plot_cluster_image_grid=F) # Re-analysis and cluster image rendering library(HiTMaP) datafile=c("Bovinlens_Trypsin_FT/Bovin_lens.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin", Fastadatabase="uniprot-bovin.fasta", use_previous_candidates=T,ppm=5,IMS_analysis=F, plot_cluster_image_grid=T, export_Header_table=T, img_brightness=250, plot_cluster_image_overwrite=T, cluster_rds_path = "/Bovin_lens ID/preprocessed_imdata.RDS",pixel_size_um = 150, Plot_score_abs_cutoff=-0.1, remove_score_outlier=T, Protein_desc_of_interest=c("Crystallin","Phakinin","Filensin","Actin","Vimentin","Cortactin","Visinin","Arpin","Tropomyosin","Myosin Light Chain 3","Kinesin Family Member 14","Dynein Regulatory Complex","Ankyrin Repeat Domain 45")) # Re-analysis and cluster image rendering using color scale library(HiTMaP) datafile=c("Bovinlens_Trypsin_FT/Bovin_lens.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin", Fastadatabase="uniprot-bovin.fasta", use_previous_candidates=T,ppm=5,IMS_analysis=F, plot_cluster_image_grid=T, export_Header_table=T, img_brightness=250, plot_cluster_image_overwrite=T, cluster_rds_path = "/Bovin_lens ID/preprocessed_imdata.RDS",pixel_size_um = 150, Plot_score_abs_cutoff=-0.1, remove_score_outlier=T,cluster_color_scale="fleximaging", Protein_desc_of_interest=c("Crystallin","Phakinin","Filensin","Actin","Vimentin","Cortactin","Visinin","Arpin","Tropomyosin","Myosin Light Chain 3","Kinesin Family Member 14","Dynein Regulatory Complex","Ankyrin Repeat Domain 45"))
library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT/Mouse_brain.imzML") wd="~/expdata/" preprocess = list(force_preprocess=TRUE, use_preprocessRDS=FALSE, smoothSignal=list(method = c("Disable", "gaussian", "sgolay", "ma")[1]), reduceBaseline=list(method = c("Disable", "locmin", "median")[1]), peakPick=list(method=c("diff", "sd", "mad", "quantile", "filter", "cwt")[3]), peakAlign=list(tolerance=5, units="ppm", level=c("local","global")[1], method=c("Enable","Disable")[1]), normalize=list(method=c("Disable","rms","tic","reference")[1], mz=NULL) ) # Data pre-processing and proteomics annotation library(HiTMaP) imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin", Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=T, preprocess=preprocess, spectra_segments_per_file=9,use_previous_candidates=F,ppm=10,FDR_cutoff = 0.05,IMS_analysis=T, Rotate_IMG="file_rotationbk.csv", mzrange = c(500,4000),plot_cluster_image_grid=F) # Re-analysis and cluster image rendering library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT/Mouse_brain.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin", Fastadatabase="uniprot_mouse_20210107.fasta", preprocess=list(force_preprocess=FALSE), spectra_segments_per_file=9,use_previous_candidates=T,ppm=10,FDR_cutoff = 0.05,IMS_analysis=F, mzrange = c(500,4000),plot_cluster_image_grid=T, img_brightness=250, plot_cluster_image_overwrite=T, cluster_rds_path = "/Mouse_brain ID/preprocessed_imdata.RDS", pixel_size_um = 50, Plot_score_abs_cutoff=-0.1, remove_score_outlier=T, Protein_desc_of_interest=c("Secernin","GN=MBP","Cytochrome")) library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT_200brit_man_seg/Mouse_brain.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin", Fastadatabase="uniprot_mouse_20210107.fasta", preprocess=list(force_preprocess=FALSE), spectra_segments_per_file=9,use_previous_candidates=T,ppm=10,FDR_cutoff = 0.05,IMS_analysis=F, mzrange = c(500,4000),plot_cluster_image_grid=T, img_brightness=250, plot_cluster_image_overwrite=T, cluster_rds_path = "/Mouse_brain ID/preprocessed_imdata.RDS", pixel_size_um = 50, Plot_score_abs_cutoff=-0.1, remove_score_outlier=T, Protein_desc_of_interest=c("GTR9"))
wd=paste0(file.path(path.package(package="HiTMaP")),"/data/") setwd(wd) #Navigate to the corresponding example data folder ad select the file(s) for a MSI annotation #Bovin lens FTICR #Identifiction imaging_identification(Digestion_site="trypsin",Fastadatabase="uniprot-Bovin.fasta",output_candidatelist=T,spectra_segments_per_file=4,use_previous_candidates=F,peptide_ID_filter=3,threshold = 0.005) #Cluster image plotting imaging_identification(Digestion_site="trypsin",Fastadatabase="uniprot-Bovin.fasta",output_candidatelist=T,spectra_segments_per_file=4,use_previous_candidates=T,peptide_ID_filter=3,threshold = 0.005,FDR_cutoff=0.05,IMS_analysis=F,plot_cluster_image_grid=T,Protein_desc_of_interest=c("crystallin","ACTIN","Vimentin","Filensin","Phakinin")) #Ultraflex data imaging_identification(Digestion_site="trypsin",Fastadatabase="uniprot-bovin.fasta",output_candidatelist=T,spectra_segments_per_file=4,use_previous_candidates=F,ppm=25) #mouse brain data library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT/Mouse_brain.imzML") setwd("C:/Users/admgguo484/Documents/") wd="~/expdata/" library(HiTMaP) imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=T,spectra_segments_per_file=4,use_previous_candidates=F,ppm=5,FDR_cutoff = 0.1,IMS_analysis=T,plot_cluster_image_grid=T,Protein_desc_of_interest=c("Histone ","GN=MBP","ACTIN"),Rotate_IMG="file_rotationbk.csv") library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT/Mouse_brain.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=6,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,IMS_analysis=T,plot_cluster_image_grid=F,Protein_desc_of_interest=c("Histone ","GN=MBP","ACTIN"),Rotate_IMG="file_rotationbk.csv") imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=8,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,IMS_analysis=T,plot_cluster_image_grid=F,Protein_desc_of_interest=c("Histone ","GN=MBP","ACTIN"),Rotate_IMG="file_rotationbk.csv",PMFsearch = F) imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=10,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,IMS_analysis=T,plot_cluster_image_grid=F,Protein_desc_of_interest=c("Histone ","GN=MBP","ACTIN"),Rotate_IMG="file_rotationbk.csv",PMFsearch = F) imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=12,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,IMS_analysis=T,plot_cluster_image_grid=F,Protein_desc_of_interest=c("Histone ","GN=MBP","ACTIN"),Rotate_IMG="file_rotationbk.csv",PMFsearch = F) imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=14,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,IMS_analysis=T,plot_cluster_image_grid=F,Protein_desc_of_interest=c("Histone ","GN=MBP","ACTIN"),Rotate_IMG="file_rotationbk.csv",PMFsearch = F) imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=16,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,IMS_analysis=T,plot_cluster_image_grid=F,Protein_desc_of_interest=c("Histone ","GN=MBP","ACTIN"),Rotate_IMG="file_rotationbk.csv",PMFsearch = F) library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT/Mouse_brain.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,IMS_analysis=T,plot_cluster_image_grid=T,Protein_desc_of_interest=c("Histone ","GN=MBP","ACTIN"),Rotate_IMG="file_rotationbk.csv",Segmentation = "none") library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT/Mouse_brain.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,Rotate_IMG="file_rotationbk.csv",Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 2,export_Header_table=T, img_brightness=160, plot_cluster_image_overwrite=T) library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT_200brit/Mouse_brain.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,Rotate_IMG="file_rotationbk.csv",Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 2,export_Header_table=T, img_brightness=250, plot_cluster_image_overwrite=T,cluster_rds_path = "preprocessed_imdata.RDS") library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT_200brit_man_seg/Mouse_brain.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,Rotate_IMG="file_rotationbk.csv",Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 2,export_Header_table=T, img_brightness=250, plot_cluster_image_overwrite=T,cluster_rds_path = "preprocessed_imdata.RDS") library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT_200brit/Mouse_brain.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,Rotate_IMG="file_rotationbk.csv",Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 1,export_Header_table=T, img_brightness=250, plot_cluster_image_overwrite=F,cluster_rds_path = "preprocessed_imdata.RDS") library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT_200brit_man_seg/Mouse_brain.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.01,Rotate_IMG="file_rotationbk.csv",Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 1,export_Header_table=T, img_brightness=250, plot_cluster_image_overwrite=F,cluster_rds_path = "preprocessed_imdata.RDS") library(HiTMaP) datafile=c("Bovinlens_Trypsin_FT_16seg\\Bovin_lens.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot-bovin.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.01,Rotate_IMG=NULL,Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 1,export_Header_table=T, img_brightness=250, plot_cluster_image_overwrite=T,cluster_rds_path = "preprocessed_imdata.RDS",pixel_size_um = 150, Plot_score_abs_cutoff=-0.1,remove_score_outlier=F) library(HiTMaP) datafile=c("Bovinlens_Trypsin_FT_16seg\\Bovin_lens.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot-bovin.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.01,Rotate_IMG=NULL,Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 1,export_Header_table=T, img_brightness=250, plot_cluster_image_overwrite=T,cluster_rds_path = "preprocessed_imdata.RDS",pixel_size_um = 150, Plot_score_abs_cutoff=-0.1,remove_score_outlier=T, Protein_desc_of_interest=c("Crystallin","Phakinin","Filensin","Actin","Vimetin","Cortactin","Visinin","Arpin","Tropomyosin","Myosin Light Chain 3","Kinesin Family Member 14","Dyenin Regulatory Complex","Ankyrin Repeat Domain 45")) library(HiTMaP) datafile=c("Bovinlens_Trypsin_FT_16seg\\Bovin_lens.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot-bovin.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.01,Rotate_IMG=NULL,Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 1,export_Header_table=T, img_brightness=250, plot_cluster_image_overwrite=T,cluster_rds_path = "preprocessed_imdata.RDS",pixel_size_um = 150, Plot_score_abs_cutoff=-0.1,remove_score_outlier=T, Protein_desc_of_interest=c("Crystallin","Phakinin","Filensin","Actin","Vimentin","Cortactin","Visinin","Arpin","Tropomyosin","Myosin Light Chain 3","Kinesin Family Member 14","Dynein Regulatory Complex","Ankyrin Repeat Domain 45")) library(HiTMaP) datafile=c("Bovinlens_Trypsin_FT_4seg\\Bovin_lens.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot-bovin.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.01,Rotate_IMG=NULL,Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 1,export_Header_table=T, img_brightness=250, plot_cluster_image_overwrite=T,cluster_rds_path = "preprocessed_imdata.RDS",pixel_size_um = 150, Plot_score_abs_cutoff=-0.1,remove_score_outlier=F, Protein_desc_of_interest=c("Crystallin","Phakinin","Filensin","Actin","Vimentin","Cortactin","Visinin","Arpin","Tropomyosin","Myosin Light Chain 3","Kinesin Family Member 14","Dynein Regulatory Complex","Ankyrin Repeat Domain 45")) library(HiTMaP) datafile=c("Bovinlens_Trypsin_FT_4segf\\Bovin_lens.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot-bovin.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.01,Rotate_IMG=NULL,Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 1,export_Header_table=T, img_brightness=250, plot_cluster_image_overwrite=T,cluster_rds_path = "preprocessed_imdata.RDS",pixel_size_um = 150, Plot_score_abs_cutoff=-0.1,remove_score_outlier=T, Protein_desc_of_interest=c("Crystallin","Phakinin","Filensin","Actin","Vimentin","Cortactin","Visinin","Arpin","Tropomyosin","Myosin Light Chain 3","Kinesin Family Member 14","Dynein Regulatory Complex","Ankyrin Repeat Domain 45")) library(HiTMaP) datafile=c("Bovinlens_Trypsin_FT fdr01\\Bovin_lens.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot-bovin.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.01,Rotate_IMG=NULL,Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 1,export_Header_table=T, img_brightness=250, plot_cluster_image_overwrite=T,cluster_rds_path = "preprocessed_imdata.RDS",pixel_size_um = 150, Plot_score_abs_cutoff=-0.1,remove_score_outlier=F, Protein_desc_of_interest=c("Crystallin","Phakinin","Filensin","Actin","Vimentin","Cortactin","Visinin","Arpin","Tropomyosin","Myosin Light Chain 3","Kinesin Family Member 14","Dynein Regulatory Complex","Ankyrin Repeat Domain 45")) library(HiTMaP) datafile=c("Bovinlens_Trypsin_FT fdr01f\\Bovin_lens.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot-bovin.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.01,Rotate_IMG=NULL,Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 1,export_Header_table=T, img_brightness=250, plot_cluster_image_overwrite=T,cluster_rds_path = "preprocessed_imdata.RDS",pixel_size_um = 150, Plot_score_abs_cutoff=-0.1,remove_score_outlier=T, Protein_desc_of_interest=c("Crystallin","Phakinin","Filensin","Actin","Vimentin","Cortactin","Visinin","Arpin","Tropomyosin","Myosin Light Chain 3","Kinesin Family Member 14","Dynein Regulatory Complex","Ankyrin Repeat Domain 45")) library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT_200brit_man_seg2f/Mouse_brain.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,Rotate_IMG="file_rotationbk.csv",Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 1,export_Header_table=T, img_brightness=250,pixel_size_um = 50, plot_cluster_image_overwrite=T,cluster_rds_path = "preprocessed_imdata.RDS",Protein_desc_of_interest=c("Secernin","GN=MBP","Cytochrome"), Plot_score_abs_cutoff=-0.1,remove_score_outlier=T) library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT_200brit_man_seg2/Mouse_brain.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,Rotate_IMG="file_rotationbk.csv",Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 1,export_Header_table=T, img_brightness=250,pixel_size_um = 50, plot_cluster_image_overwrite=T,cluster_rds_path = "preprocessed_imdata.RDS",Protein_desc_of_interest=c("Secernin","GN=MBP","Cytochrome"), Plot_score_abs_cutoff=-0.1,remove_score_outlier=F) library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT_200brit_man_seg2f/Mouse_brain.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,Rotate_IMG="file_rotationbk.csv",Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 1,export_Header_table=T, img_brightness=250,pixel_size_um = 50, plot_cluster_image_overwrite=T,cluster_rds_path = "preprocessed_imdata.RDS",Protein_desc_of_interest=c("Secernin","GN=MBP","Cytochrome"), Plot_score_abs_cutoff=-0.1,remove_score_outlier=T) library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT_200brit_man_seg2/Mouse_brain.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile), Digestion_site="trypsin", Fastadatabase="uniprot_mouse_20210107.fasta", output_candidatelist=F, spectra_segments_per_file=4, use_previous_candidates=T, ppm=5,FDR_cutoff = 0.1, Rotate_IMG="file_rotationbk.csv", Segmentation = "none", IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 1, export_Header_table=T, img_brightness=250,pixel_size_um = 50, plot_cluster_image_overwrite=T,cluster_rds_path = "preprocessed_imdata.RDS", Protein_desc_of_interest=c("GBRG3","GBRD","GRIA4","ACHB3","SH3G1","SHLB1","VAMP8", "VAMP8","STX1A","KPYR", "CX6A1","SAM12","PDE10","SERF2","MFRN2","Neutrophilic granule", "LFTY1","SNIP1","KPCL","WNT2B","ADA22","HPLN3"), Plot_score_abs_cutoff=-0.1,remove_score_outlier=F) library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT_200brit_man_segf/Mouse_brain.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,Rotate_IMG="file_rotationbk.csv",Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 1,export_Header_table=T, img_brightness=250,pixel_size_um = 50, plot_cluster_image_overwrite=T,cluster_rds_path = "preprocessed_imdata.RDS", Plot_score_abs_cutoff=-0.1,remove_score_outlier=T) library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT_200brit_man_seg/Mouse_brain.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,Rotate_IMG="file_rotationbk.csv",Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 1,export_Header_table=T, img_brightness=250,pixel_size_um = 50, plot_cluster_image_overwrite=T,cluster_rds_path = "preprocessed_imdata.RDS", Plot_score_abs_cutoff=-0.1,remove_score_outlier=F) library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT_man_seg/Mouse_brain.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,Rotate_IMG="file_rotationbk.csv",Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 2,export_Header_table=T, img_brightness=200, plot_cluster_image_overwrite=T) library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT_man_seg/Mouse_brain.imzML") wd="G:/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,Rotate_IMG="file_rotationbk.csv",Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 1,export_Header_table=T, img_brightness=250, plot_cluster_image_overwrite=F,cluster_rds_path = "preprocessed_imdata.RDS") library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT/Mouse_brain.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=5,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,IMS_analysis=T,plot_cluster_image_grid=T,Protein_desc_of_interest=c("Histone ","GN=MBP","ACTIN"),Rotate_IMG="file_rotationbk.csv")
wd=paste0(file.path(path.package(package="HiTMaP")),"/data/") setwd(wd) #Navigate to the corresponding example data folder ad select the file(s) for a MSI annotation #Bovin lens FTICR #Identifiction imaging_identification(Digestion_site="trypsin",Fastadatabase="uniprot-Bovin.fasta",output_candidatelist=T,spectra_segments_per_file=4,use_previous_candidates=F,peptide_ID_filter=3,threshold = 0.005) #Cluster image plotting imaging_identification(Digestion_site="trypsin",Fastadatabase="uniprot-Bovin.fasta",output_candidatelist=T,spectra_segments_per_file=4,use_previous_candidates=T,peptide_ID_filter=3,threshold = 0.005,FDR_cutoff=0.05,IMS_analysis=F,plot_cluster_image_grid=T,Protein_desc_of_interest=c("crystallin","ACTIN","Vimentin","Filensin","Phakinin")) #peptide calibrant imaging_identification( Digestion_site="trypsin", Fastadatabase="uniprot_cali.fasta", output_candidatelist=T, plot_matching_score=T, spectra_segments_per_file=1, use_previous_candidates=F, peptide_ID_filter=1,ppm=5,missedCleavages=0:5, Modifications=list(fixed=NULL,fixmod_position=NULL,variable=c("Amide"),varmod_position=c(6)), FDR_cutoff=0.1, Substitute_AA=list(AA=c("X"),AA_new_formula=c("C5H5NO2"),Formula_with_water=c(FALSE))) imaging_identification( adducts = c("M+H","M+Na"), Digestion_site="trypsin", Fastadatabase="uniprot_cali.fasta", output_candidatelist=T, plot_matching_score=T, spectra_segments_per_file=1, use_previous_candidates=F, peptide_ID_filter=1,ppm=5,missedCleavages=0:5, Modifications=list(fixed=NULL,fixmod_position=NULL,variable=c("Amide"),varmod_position=c(6)), FDR_cutoff=0.1, Substitute_AA=list(AA=c("X"),AA_new_formula=c("C5H5NO2"),Formula_with_water=c(FALSE))) imaging_identification( Digestion_site="trypsin", Fastadatabase="uniprot_cali.fasta", output_candidatelist=T, plot_matching_score=T, spectra_segments_per_file=1, use_previous_candidates=T, peptide_ID_filter=1,ppm=5,missedCleavages=0:5, FDR_cutoff=0.1) imaging_identification( Digestion_site="trypsin", Fastadatabase="calibrants.fasta", output_candidatelist=T, plot_matching_score=T, spectra_segments_per_file=1, use_previous_candidates=T, peptide_ID_filter=1,ppm=5,missedCleavages=0:5, Modifications=list(fixed=NULL,fixmod_position=NULL,variable=c("Amide"),varmod_position=c(6)), FDR_cutoff=100, Substitute_AA=list(AA=c("X"),AA_new_formula=c("C5H5NO2"),Formula_with_water=c(FALSE)),Thread = 1) #Ultraflex data imaging_identification(Digestion_site="trypsin",Fastadatabase="uniprot-bovin.fasta",output_candidatelist=T,spectra_segments_per_file=4,use_previous_candidates=F,ppm=25) #mouse brain data library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT/Mouse_brain.imzML") setwd("C:/Users/admgguo484/Documents/") wd="~/expdata/" library(HiTMaP) imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=T,spectra_segments_per_file=4,use_previous_candidates=F,ppm=5,FDR_cutoff = 0.1,IMS_analysis=T,plot_cluster_image_grid=T,Protein_desc_of_interest=c("Histone ","GN=MBP","ACTIN"),Rotate_IMG="file_rotationbk.csv") library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT/Mouse_brain.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=6,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,IMS_analysis=T,plot_cluster_image_grid=F,Protein_desc_of_interest=c("Histone ","GN=MBP","ACTIN"),Rotate_IMG="file_rotationbk.csv") imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=8,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,IMS_analysis=T,plot_cluster_image_grid=F,Protein_desc_of_interest=c("Histone ","GN=MBP","ACTIN"),Rotate_IMG="file_rotationbk.csv",PMFsearch = F) imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=10,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,IMS_analysis=T,plot_cluster_image_grid=F,Protein_desc_of_interest=c("Histone ","GN=MBP","ACTIN"),Rotate_IMG="file_rotationbk.csv",PMFsearch = F) imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=12,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,IMS_analysis=T,plot_cluster_image_grid=F,Protein_desc_of_interest=c("Histone ","GN=MBP","ACTIN"),Rotate_IMG="file_rotationbk.csv",PMFsearch = F) imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=14,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,IMS_analysis=T,plot_cluster_image_grid=F,Protein_desc_of_interest=c("Histone ","GN=MBP","ACTIN"),Rotate_IMG="file_rotationbk.csv",PMFsearch = F) imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=16,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,IMS_analysis=T,plot_cluster_image_grid=F,Protein_desc_of_interest=c("Histone ","GN=MBP","ACTIN"),Rotate_IMG="file_rotationbk.csv",PMFsearch = F) library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT/Mouse_brain.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,IMS_analysis=T,plot_cluster_image_grid=T,Protein_desc_of_interest=c("Histone ","GN=MBP","ACTIN"),Rotate_IMG="file_rotationbk.csv",Segmentation = "none") library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT/Mouse_brain.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,Rotate_IMG="file_rotationbk.csv",Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 2,export_Header_table=T, img_brightness=160, plot_cluster_image_overwrite=T) library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT_200brit/Mouse_brain.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,Rotate_IMG="file_rotationbk.csv",Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 2,export_Header_table=T, img_brightness=250, plot_cluster_image_overwrite=T,cluster_rds_path = "preprocessed_imdata.RDS") library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT_200brit_man_seg/Mouse_brain.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,Rotate_IMG="file_rotationbk.csv",Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 2,export_Header_table=T, img_brightness=250, plot_cluster_image_overwrite=T,cluster_rds_path = "preprocessed_imdata.RDS") library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT_200brit/Mouse_brain.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,Rotate_IMG="file_rotationbk.csv",Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 1,export_Header_table=T, img_brightness=250, plot_cluster_image_overwrite=F,cluster_rds_path = "preprocessed_imdata.RDS") library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT_200brit_man_seg/Mouse_brain.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.01,Rotate_IMG="file_rotationbk.csv",Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 1,export_Header_table=T, img_brightness=250, plot_cluster_image_overwrite=F,cluster_rds_path = "preprocessed_imdata.RDS") library(HiTMaP) datafile=c("Bovinlens_Trypsin_FT_16seg\\Bovin_lens.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot-bovin.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.01,Rotate_IMG=NULL,Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 1,export_Header_table=T, img_brightness=250, plot_cluster_image_overwrite=T,cluster_rds_path = "preprocessed_imdata.RDS",pixel_size_um = 150, Plot_score_abs_cutoff=-0.1,remove_score_outlier=F) library(HiTMaP) datafile=c("Bovinlens_Trypsin_FT_16seg\\Bovin_lens.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot-bovin.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.01,Rotate_IMG=NULL,Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 1,export_Header_table=T, img_brightness=250, plot_cluster_image_overwrite=T,cluster_rds_path = "preprocessed_imdata.RDS",pixel_size_um = 150, Plot_score_abs_cutoff=-0.1,remove_score_outlier=T, Protein_desc_of_interest=c("Crystallin","Phakinin","Filensin","Actin","Vimetin","Cortactin","Visinin","Arpin","Tropomyosin","Myosin Light Chain 3","Kinesin Family Member 14","Dyenin Regulatory Complex","Ankyrin Repeat Domain 45")) library(HiTMaP) datafile=c("Bovinlens_Trypsin_FT_16seg\\Bovin_lens.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot-bovin.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.01,Rotate_IMG=NULL,Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 1,export_Header_table=T, img_brightness=250, plot_cluster_image_overwrite=T,cluster_rds_path = "preprocessed_imdata.RDS",pixel_size_um = 150, Plot_score_abs_cutoff=-0.1,remove_score_outlier=T, Protein_desc_of_interest=c("Crystallin","Phakinin","Filensin","Actin","Vimentin","Cortactin","Visinin","Arpin","Tropomyosin","Myosin Light Chain 3","Kinesin Family Member 14","Dynein Regulatory Complex","Ankyrin Repeat Domain 45")) library(HiTMaP) datafile=c("Bovinlens_Trypsin_FT_4seg\\Bovin_lens.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot-bovin.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.01,Rotate_IMG=NULL,Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 1,export_Header_table=T, img_brightness=250, plot_cluster_image_overwrite=T,cluster_rds_path = "preprocessed_imdata.RDS",pixel_size_um = 150, Plot_score_abs_cutoff=-0.1,remove_score_outlier=F, Protein_desc_of_interest=c("Crystallin","Phakinin","Filensin","Actin","Vimentin","Cortactin","Visinin","Arpin","Tropomyosin","Myosin Light Chain 3","Kinesin Family Member 14","Dynein Regulatory Complex","Ankyrin Repeat Domain 45")) library(HiTMaP) datafile=c("Bovinlens_Trypsin_FT_4segf\\Bovin_lens.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot-bovin.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.01,Rotate_IMG=NULL,Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 1,export_Header_table=T, img_brightness=250, plot_cluster_image_overwrite=T,cluster_rds_path = "preprocessed_imdata.RDS",pixel_size_um = 150, Plot_score_abs_cutoff=-0.1,remove_score_outlier=T, Protein_desc_of_interest=c("Crystallin","Phakinin","Filensin","Actin","Vimentin","Cortactin","Visinin","Arpin","Tropomyosin","Myosin Light Chain 3","Kinesin Family Member 14","Dynein Regulatory Complex","Ankyrin Repeat Domain 45")) library(HiTMaP) datafile=c("Bovinlens_Trypsin_FT fdr01\\Bovin_lens.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot-bovin.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.01,Rotate_IMG=NULL,Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 1,export_Header_table=T, img_brightness=250, plot_cluster_image_overwrite=T,cluster_rds_path = "preprocessed_imdata.RDS",pixel_size_um = 150, Plot_score_abs_cutoff=-0.1,remove_score_outlier=F, Protein_desc_of_interest=c("Crystallin","Phakinin","Filensin","Actin","Vimentin","Cortactin","Visinin","Arpin","Tropomyosin","Myosin Light Chain 3","Kinesin Family Member 14","Dynein Regulatory Complex","Ankyrin Repeat Domain 45")) library(HiTMaP) datafile=c("Bovinlens_Trypsin_FT fdr01f\\Bovin_lens.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot-bovin.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.01,Rotate_IMG=NULL,Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 1,export_Header_table=T, img_brightness=250, plot_cluster_image_overwrite=T,cluster_rds_path = "preprocessed_imdata.RDS",pixel_size_um = 150, Plot_score_abs_cutoff=-0.1,remove_score_outlier=T, Protein_desc_of_interest=c("Crystallin","Phakinin","Filensin","Actin","Vimentin","Cortactin","Visinin","Arpin","Tropomyosin","Myosin Light Chain 3","Kinesin Family Member 14","Dynein Regulatory Complex","Ankyrin Repeat Domain 45")) library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT_200brit_man_seg2f/Mouse_brain.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,Rotate_IMG="file_rotationbk.csv",Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 1,export_Header_table=T, img_brightness=250,pixel_size_um = 50, plot_cluster_image_overwrite=T,cluster_rds_path = "preprocessed_imdata.RDS",Protein_desc_of_interest=c("Secernin","GN=MBP","Cytochrome"), Plot_score_abs_cutoff=-0.1,remove_score_outlier=T) library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT_200brit_man_seg2/Mouse_brain.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,Rotate_IMG="file_rotationbk.csv",Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 1,export_Header_table=T, img_brightness=250,pixel_size_um = 50, plot_cluster_image_overwrite=T,cluster_rds_path = "preprocessed_imdata.RDS",Protein_desc_of_interest=c("Secernin","GN=MBP","Cytochrome"), Plot_score_abs_cutoff=-0.1,remove_score_outlier=F) library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT_200brit_man_seg2f/Mouse_brain.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,Rotate_IMG="file_rotationbk.csv",Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 1,export_Header_table=T, img_brightness=250,pixel_size_um = 50, plot_cluster_image_overwrite=T,cluster_rds_path = "preprocessed_imdata.RDS",Protein_desc_of_interest=c("Secernin","GN=MBP","Cytochrome"), Plot_score_abs_cutoff=-0.1,remove_score_outlier=T) library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT_200brit_man_seg2/Mouse_brain.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile), Digestion_site="trypsin", Fastadatabase="uniprot_mouse_20210107.fasta", output_candidatelist=F, spectra_segments_per_file=4, use_previous_candidates=T, ppm=5,FDR_cutoff = 0.1, Rotate_IMG="file_rotationbk.csv", Segmentation = "none", IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 1, export_Header_table=T, img_brightness=250,pixel_size_um = 50, plot_cluster_image_overwrite=T,cluster_rds_path = "preprocessed_imdata.RDS", Protein_desc_of_interest=c("GBRG3","GBRD","GRIA4","ACHB3","SH3G1","SHLB1","VAMP8", "VAMP8","STX1A","KPYR", "CX6A1","SAM12","PDE10","SERF2","MFRN2","Neutrophilic granule", "LFTY1","SNIP1","KPCL","WNT2B","ADA22","HPLN3"), Plot_score_abs_cutoff=-0.1,remove_score_outlier=F) library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT_200brit_man_segf/Mouse_brain.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,Rotate_IMG="file_rotationbk.csv",Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 1,export_Header_table=T, img_brightness=250,pixel_size_um = 50, plot_cluster_image_overwrite=T,cluster_rds_path = "preprocessed_imdata.RDS", Plot_score_abs_cutoff=-0.1,remove_score_outlier=T) library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT_200brit_man_seg/Mouse_brain.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,Rotate_IMG="file_rotationbk.csv",Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 1,export_Header_table=T, img_brightness=250,pixel_size_um = 50, plot_cluster_image_overwrite=T,cluster_rds_path = "preprocessed_imdata.RDS", Plot_score_abs_cutoff=-0.1,remove_score_outlier=F) library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT_man_seg/Mouse_brain.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,Rotate_IMG="file_rotationbk.csv",Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 2,export_Header_table=T, img_brightness=200, plot_cluster_image_overwrite=T) library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT_man_seg/Mouse_brain.imzML") wd="G:/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,Rotate_IMG="file_rotationbk.csv",Segmentation = "none",IMS_analysis=F,plot_cluster_image_grid=T,peptide_ID_filter = 1,export_Header_table=T, img_brightness=250, plot_cluster_image_overwrite=F,cluster_rds_path = "preprocessed_imdata.RDS") library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT/Mouse_brain.imzML") wd="~/expdata/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F,spectra_segments_per_file=5,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.1,IMS_analysis=T,plot_cluster_image_grid=T,Protein_desc_of_interest=c("Histone ","GN=MBP","ACTIN"),Rotate_IMG="file_rotationbk.csv")
library(HiTMaP) datafile=c("01-root mean square.imzML") wd="D:/dropbox/Dropbox (Uni of Auckland)/Mouse_Brain_Micheal/" # Data pre-processing and proteomics annotation library(HiTMaP) imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin", Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=T, preprocess=list(force_preprocess=T, use_preprocessRDS=TRUE, smoothSignal=list(method="Disable"), reduceBaseline=list(method="Disable"), peakPick=list(method="adaptive"), peakAlign=list(tolerance=5, units="ppm"), normalize=list(method=c("Disable","rms","tic","reference")[1],mz=1)), spectra_segments_per_file=9,use_previous_candidates=F,ppm=25,FDR_cutoff = 0.05,IMS_analysis=T, Rotate_IMG="file_rotationbk.csv", mzrange = c(500,4000),plot_cluster_image_grid=F) # Re-analysis and cluster image rendering library(HiTMaP) datafile=c("01-root mean square.imzML") wd="D:/dropbox/Dropbox (Uni of Auckland)/Mouse_Brain_Micheal/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin", Fastadatabase="uniprot_mouse_20210107.fasta", preprocess=list(force_preprocess=FALSE), spectra_segments_per_file=9,use_previous_candidates=T,ppm=10,FDR_cutoff = 0.05,IMS_analysis=F, mzrange = c(500,4000),plot_cluster_image_grid=T, img_brightness=250, plot_cluster_image_overwrite=T, cluster_rds_path = "/01-root mean square ID/preprocessed_imdata.RDS", pixel_size_um = 50, Plot_score_abs_cutoff=-0.1, remove_score_outlier=F) library(HiTMaP) datafile=c("Mouse_Brain_Test_2.imzML") wd="G:/mousebrain2_michael/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin", Fastadatabase="uniprot_mouse_20210107.fasta", preprocess=list(force_preprocess=T, use_preprocessRDS=TRUE, smoothSignal=list(method="Disable"), reduceBaseline=list(method="Disable"), peakPick=list(method="adaptive"), peakAlign=list(tolerance=5, units="ppm"), normalize=list(method=c("Disable","rms","tic","reference")[1],mz=1)), spectra_segments_per_file=9,use_previous_candidates=T,ppm=25,FDR_cutoff = 0.05,IMS_analysis=T, mzrange = c(1000,3000),plot_cluster_image_grid=T, img_brightness=250, plot_cluster_image_overwrite=T, cluster_rds_path = "/Mouse_Brain_Test_2 ID/preprocessed_imdata.RDS", pixel_size_um = 50, Plot_score_abs_cutoff=-0.1, remove_score_outlier=F) library(HiTMaP) datafile=c("Mouse_Brain_Test_2.imzML") wd="G:/mousebrain2_michael/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin", Fastadatabase="uniprot_mouse_20210107.fasta", preprocess=list(force_preprocess=T, use_preprocessRDS=TRUE, smoothSignal=list(method="Disable"), reduceBaseline=list(method="Disable"), peakPick=list(method="adaptive"), peakAlign=list(tolerance=5, units="ppm"), normalize=list(method=c("Disable","rms","tic","reference")[1],mz=1)), spectra_segments_per_file=9,use_previous_candidates=T,ppm=25,FDR_cutoff = 0.05,IMS_analysis=F, mzrange = c(1000,3000),plot_cluster_image_grid=T, img_brightness=250, plot_cluster_image_overwrite=T, cluster_rds_path = "/Mouse_Brain_Test_2 ID/preprocessed_imdata.RDS", pixel_size_um = 50, Plot_score_abs_cutoff=-0.1, remove_score_outlier=F) library(HiTMaP) datafile=c("Mouse_Brain_Test_2.imzML") wd="G:/mousebrain2_michael/" imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin", Fastadatabase="uniprot_mouse_20210107.fasta", preprocess=list(force_preprocess=F, use_preprocessRDS=TRUE, smoothSignal=list(method="Disable"), reduceBaseline=list(method="Disable"), peakPick=list(method="adaptive"), peakAlign=list(tolerance=5, units="ppm"), normalize=list(method=c("Disable","rms","tic","reference")[1],mz=1)), spectra_segments_per_file=9,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.05,IMS_analysis=T, mzrange = c(1000,3000),plot_cluster_image_grid=T, img_brightness=250, plot_cluster_image_overwrite=T, cluster_rds_path = "/Mouse_Brain_Test_2 ID/preprocessed_imdata.RDS", pixel_size_um = 50, Plot_score_abs_cutoff=-0.1, remove_score_outlier=F) library(HiTMaP) datafile=c("aqueous_tl-root mean square.imzML","organic_tr-root mean square.imzML") wd="D:/dropbox/Dropbox (Uni of Auckland)/Mouse_Brain_Test_3/" # Data pre-processing and proteomics annotation library(HiTMaP) imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin", Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=T, preprocess=list(force_preprocess=T, use_preprocessRDS=TRUE, smoothSignal=list(method="Disable"), reduceBaseline=list(method="Disable"), peakPick=list(method="adaptive"), peakAlign=list(tolerance=2.5, units="ppm"), normalize=list(method=c("Disable","rms","tic","reference")[1],mz=1)), spectra_segments_per_file=9,use_previous_candidates=F,ppm=5,FDR_cutoff = 0.05,IMS_analysis=T, Rotate_IMG=NULL, mzrange = c(500,4000),plot_cluster_image_grid=F) library(HiTMaP) datafile=c("aqueous_tl-root mean square.imzML","organic_tr-root mean square.imzML") wd="D:/dropbox/Dropbox (Uni of Auckland)/Mouse_Brain_Test_3/" library(HiTMaP) imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin", Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=F, preprocess=list(force_preprocess=F, use_preprocessRDS=TRUE, smoothSignal=list(method="Disable"), reduceBaseline=list(method="Disable"), peakPick=list(method="adaptive"), peakAlign=list(tolerance=2.5, units="ppm"), normalize=list(method=c("Disable","rms","tic","reference")[1],mz=1)), spectra_segments_per_file=9,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.05,IMS_analysis=F, Rotate_IMG=NULL, mzrange = c(500,4000),plot_cluster_image_grid=T,pixel_size_um = 150,remove_score_outlier=F,attach_summary_cluster = F, remove_cluster_from_grid=F) datafile=c("aqueous_RMS.imzML","detergent_RMS.imzML") wd="D:/dropbox/Dropbox (Uni of Auckland)/PyMT_Test_3/" library(HiTMaP) imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin", Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=T, preprocess=list(force_preprocess=F, use_preprocessRDS=TRUE, smoothSignal=list(method="Disable"), reduceBaseline=list(method="Disable"), peakPick=list(method="Default"), peakAlign=list(tolerance=2.5, units="ppm"), normalize=list(method="Disable")), spectra_segments_per_file=9,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.05,IMS_analysis=F,Thread=1, Rotate_IMG=NULL,cluster_rds_path="/combinedimdata.rds", mzrange = c(500,4000),plot_cluster_image_grid=T,pixel_size_um = 150,remove_score_outlier=F,attach_summary_cluster = F, remove_cluster_from_grid=F,plot_cluster_image_overwrite=T) datafile=c("aqueous_RMS.imzML","detergent_RMS.imzML") wd="G:/PyMT_Test_3/" library(HiTMaP) imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin", Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=T, preprocess=list(force_preprocess=F, use_preprocessRDS=TRUE, smoothSignal=list(method="Disable"), reduceBaseline=list(method="Disable"), peakPick=list(method="Default"), peakAlign=list(tolerance=2.5, units="ppm"), normalize=list(method="Disable")), spectra_segments_per_file=9,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.05,IMS_analysis=F,Thread=1, Rotate_IMG=NULL,cluster_rds_path="/combinedimdata.rds", mzrange = c(500,4000),plot_cluster_image_grid=T,pixel_size_um = 150,remove_score_outlier=F,attach_summary_cluster = F, remove_cluster_from_grid=F,plot_cluster_image_overwrite=F) datafile=c("aqueous_RMS.imzML","detergent_RMS.imzML") wd="G:/PyMT_Test_3/" library(HiTMaP) imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin", Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=T, preprocess=list(force_preprocess=T, use_preprocessRDS=TRUE, smoothSignal=list(method="Disable"), reduceBaseline=list(method="Disable"), peakPick=list(method="adaptive"), peakAlign=list(tolerance=2.5, units="ppm"), normalize=list(method="Disable")), spectra_segments_per_file=9,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.05,IMS_analysis=T,Thread=1, Rotate_IMG=NULL,cluster_rds_path="/combinedimdata.rds", mzrange = c(500,4000),plot_cluster_image_grid=F,pixel_size_um = 150,remove_score_outlier=F,attach_summary_cluster = F, remove_cluster_from_grid=F,plot_cluster_image_overwrite=T) datafile=c("aqueous_RMS.imzML","detergent_RMS.imzML") wd="~/expdata/" library(HiTMaP) imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin", Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=T, preprocess=list(force_preprocess=T, use_preprocessRDS=TRUE, smoothSignal=list(method="Disable"), reduceBaseline=list(method="Disable"), peakPick=list(method="adaptive"), peakAlign=list(tolerance=2.5, units="ppm"), normalize=list(method="Disable")), spectra_segments_per_file=9,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.05,IMS_analysis=T,Thread=1, Rotate_IMG=NULL,cluster_rds_path="/combinedimdata.rds", mzrange = c(500,4000),plot_cluster_image_grid=F,pixel_size_um = 150,remove_score_outlier=F,attach_summary_cluster = F, remove_cluster_from_grid=F,plot_cluster_image_overwrite=T) datafile=c("mouse_kidney_cut.imzML") wd="~/expdata/kindney/" library(HiTMaP) imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin",threshold = 0, Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=T, preprocess=list(force_preprocess=T, use_preprocessRDS=TRUE, smoothSignal=list(method="gaussian"), reduceBaseline=list(method="locmin"), peakPick=list(method="adaptive"), peakAlign=list(tolerance=25,level="global", units="ppm"), normalize=list(method="rms")), spectra_segments_per_file=5,use_previous_candidates=T,ppm=25,FDR_cutoff = 0.05,IMS_analysis=T,Thread=1, Rotate_IMG=NULL,cluster_rds_path="/combinedimdata.rds", mzrange = c(1220,1624),plot_cluster_image_grid=T,pixel_size_um = 150,remove_score_outlier=F,attach_summary_cluster = F, remove_cluster_from_grid=F,plot_cluster_image_overwrite=T)
library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT/Mouse_brain.imzML") wd="~/expdata/" #imdata<-readMSIData(paste0(wd,"/",datafile),resolution=5,units="ppm") # # HiTMaP:::Preprocessing_segmentation(datafile, # workdir=wd, # segmentation_num=5, # ppm=5,Bypass_Segmentation=T, # BPPARAM=SerialParam(), # preprocess=list(force_preprocess=T, # use_preprocessRDS=T, # smoothSignal=list(method="Disable"), # reduceBaseline=list(method="Disable"), # peakPick=list(method="adaptive"), # peakAlign=list(tolerance=5,level="global", units="ppm"), # normalize=list(method="rms",mz=229.04734))) # # imdata <- readRDS("~/expdata/MouseBrain_Trypsin_FT/Mouse_brain ID/preprocessed_imdata.RDS") # imdata %>% mzFilter(freq.min=0.1) %>% process() -> imdata_tiny # imdata_tiny %>% writeMSIData( file="~/expdata/Mouse_brain_tiny.imzml",intensity.type="16-bit integer", outformat="imzML") pixel_rerank<-function(label_org,combinedimdata,x_filters="<= 0.15",y_filters=NULL,label_select="OC"){ library(Cardinal) run(combinedimdata)<-tolower(run(combinedimdata)) label_org_rerank<-as.character(label_org) for (uniquerun in unique(run(combinedimdata))){ region_selection<-rep(FALSE,length(label_org[combinedimdata@elementMetadata@run==tolower(uniquerun)])) corrd_selection<-rep(FALSE,length(label_org[combinedimdata@elementMetadata@run==tolower(uniquerun)])) corrd_selection_x<-rep(T,length(label_org[combinedimdata@elementMetadata@run==tolower(uniquerun)])) corrd_selection_y<-rep(T,length(label_org[combinedimdata@elementMetadata@run==tolower(uniquerun)])) imdata <- combinedimdata[,combinedimdata@elementMetadata@run==tolower(uniquerun)] rotatetmp<-as.data.frame(imdata@elementMetadata@coord@listData) if (!is.null(x_filters)){ corrd_selection_pixel_candi<-rep(T,length(label_org[combinedimdata@elementMetadata@run==tolower(uniquerun)])) for (filter in x_filters){ label_org_filter<-rep(FALSE,length(label_org[combinedimdata@elementMetadata@run==tolower(uniquerun)])) label_org_filter[unlist(lapply(paste0(rotatetmp$x/max(rotatetmp$x),filter),function(x) eval(parse(text=x))))]<-T corrd_selection_pixel_candi<-`&`(corrd_selection_pixel_candi,label_org_filter) } corrd_selection_x<-corrd_selection_pixel_candi } if (!is.null(y_filters)){ corrd_selection_pixel_candi<-rep(T,length(label_org[combinedimdata@elementMetadata@run==tolower(uniquerun)])) for (filter in y_filters){ label_org_filter<-rep(FALSE,length(label_org[combinedimdata@elementMetadata@run==tolower(uniquerun)])) label_org_filter[unlist(lapply(paste0(rotatetmp$y/max(rotatetmp$y),filter),function(x) eval(parse(text=x))))]<-T corrd_selection_pixel_candi<-`&`(corrd_selection_pixel_candi,label_org_filter) } corrd_selection_y<-corrd_selection_pixel_candi } corrd_selection<-`&`(corrd_selection_x,corrd_selection_y) if (!is.null(label_select)){ label_selection <- label_org[combinedimdata@elementMetadata@run==tolower(uniquerun)] %in% label_select }else{ label_selection <- rep(T,length(label_org[combinedimdata@elementMetadata@run==tolower(uniquerun)])) } label_org_rerank[combinedimdata@elementMetadata@run==tolower(uniquerun)]<-`&`(label_selection,corrd_selection) } return(label_org_rerank) } # # imdata -> imdata_tiny # imdata_tiny %>% writeMSIData( file="~/expdata/Mouse_brain_tiny2.imzml", outformat="imzML") # # imdata_tiny_selected<-imdata_tiny[,pixel_selected] # imdata_tiny_selected %>% writeMSIData( file="~/expdata/Mouse_brain_tiny_trimmed.imzml", outformat="imzML") imdata<-readMSIData(paste0(wd,"/",datafile),resolution=5,units="ppm") imdata<-imdata[between(mz(imdata),700,1400),] pixel_selected<-as.logical(pixel_rerank(run(imdata_tiny),imdata_tiny,x_filters="<= 0.3",y_filters="<= 0.2",label_select=NULL)) imdata_tiny_selected<-imdata[,pixel_selected] imdata_tiny_selected %>% writeMSIData( file="~/expdata/Mouse_brain_trimmed.imzml", outformat="imzML") library(HiTMaP) datafile=c("MouseBrain_Trypsin_FT/Mouse_brain_trimmed.imzML") wd="~/expdata/" # Data pre-processing and proteomics annotation library(HiTMaP) imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin", Fastadatabase="uniprot_mouse_20210107.fasta",output_candidatelist=T, preprocess=list(force_preprocess=T, use_preprocessRDS=TRUE, smoothSignal=list(method="Disable"), reduceBaseline=list(method="Disable"), peakPick=list(method="adaptive"), peakAlign=list(tolerance=5, units="ppm"), normalize=list(method=c("Disable","rms","tic","reference")[1],mz=1)), spectra_segments_per_file=9,use_previous_candidates=T,ppm=10,FDR_cutoff = 0.05,IMS_analysis=T, Rotate_IMG="file_rotationbk.csv", mzrange = c(500,4000),plot_cluster_image_grid=F)
library(HiTMaP) datafile=c("Bovinlens_Trypsin_FT/Bovin_lens.imzML") wd="~/expdata/" #imdata<-readMSIData(paste0(wd,"/",datafile),resolution=5,units="ppm") # # HiTMaP:::Preprocessing_segmentation(datafile, # workdir=wd, # segmentation_num=5, # ppm=5,Bypass_Segmentation=T, # BPPARAM=SerialParam(), # preprocess=list(force_preprocess=T, # use_preprocessRDS=T, # smoothSignal=list(method="Disable"), # reduceBaseline=list(method="Disable"), # peakPick=list(method="adaptive"), # peakAlign=list(tolerance=5,level="global", units="ppm"), # normalize=list(method="rms",mz=229.04734))) # # imdata <- readRDS("~/expdata/MouseBrain_Trypsin_FT/Mouse_brain ID/preprocessed_imdata.RDS") # imdata %>% mzFilter(freq.min=0.1) %>% process() -> imdata_tiny # imdata_tiny %>% writeMSIData( file="~/expdata/Mouse_brain_tiny.imzml",intensity.type="16-bit integer", outformat="imzML") pixel_rerank<-function(label_org,combinedimdata,x_filters="<= 0.15",y_filters=NULL,label_select="OC"){ library(Cardinal) run(combinedimdata)<-tolower(run(combinedimdata)) label_org_rerank<-as.character(label_org) for (uniquerun in unique(run(combinedimdata))){ region_selection<-rep(FALSE,length(label_org[combinedimdata@elementMetadata@run==tolower(uniquerun)])) corrd_selection<-rep(FALSE,length(label_org[combinedimdata@elementMetadata@run==tolower(uniquerun)])) corrd_selection_x<-rep(T,length(label_org[combinedimdata@elementMetadata@run==tolower(uniquerun)])) corrd_selection_y<-rep(T,length(label_org[combinedimdata@elementMetadata@run==tolower(uniquerun)])) imdata <- combinedimdata[,combinedimdata@elementMetadata@run==tolower(uniquerun)] rotatetmp<-as.data.frame(imdata@elementMetadata@coord@listData) if (!is.null(x_filters)){ corrd_selection_pixel_candi<-rep(T,length(label_org[combinedimdata@elementMetadata@run==tolower(uniquerun)])) for (filter in x_filters){ label_org_filter<-rep(FALSE,length(label_org[combinedimdata@elementMetadata@run==tolower(uniquerun)])) label_org_filter[unlist(lapply(paste0(rotatetmp$x/max(rotatetmp$x),filter),function(x) eval(parse(text=x))))]<-T corrd_selection_pixel_candi<-`&`(corrd_selection_pixel_candi,label_org_filter) } corrd_selection_x<-corrd_selection_pixel_candi } if (!is.null(y_filters)){ corrd_selection_pixel_candi<-rep(T,length(label_org[combinedimdata@elementMetadata@run==tolower(uniquerun)])) for (filter in y_filters){ label_org_filter<-rep(FALSE,length(label_org[combinedimdata@elementMetadata@run==tolower(uniquerun)])) label_org_filter[unlist(lapply(paste0(rotatetmp$y/max(rotatetmp$y),filter),function(x) eval(parse(text=x))))]<-T corrd_selection_pixel_candi<-`&`(corrd_selection_pixel_candi,label_org_filter) } corrd_selection_y<-corrd_selection_pixel_candi } corrd_selection<-`&`(corrd_selection_x,corrd_selection_y) if (!is.null(label_select)){ label_selection <- label_org[combinedimdata@elementMetadata@run==tolower(uniquerun)] %in% label_select }else{ label_selection <- rep(T,length(label_org[combinedimdata@elementMetadata@run==tolower(uniquerun)])) } label_org_rerank[combinedimdata@elementMetadata@run==tolower(uniquerun)]<-`&`(label_selection,corrd_selection) } return(label_org_rerank) } # # imdata -> imdata_tiny # imdata_tiny %>% writeMSIData( file="~/expdata/Mouse_brain_tiny2.imzml", outformat="imzML") # # imdata_tiny_selected<-imdata_tiny[,pixel_selected] # imdata_tiny_selected %>% writeMSIData( file="~/expdata/Mouse_brain_tiny_trimmed.imzml", outformat="imzML") imdata<-readMSIData(paste0(wd,"/",datafile),resolution=5,units="ppm") imdata<-imdata[between(mz(imdata),700,1400),] pixel_selected<-as.logical(pixel_rerank(run(imdata),imdata,x_filters="<= 0.2",y_filters=">= 0.8",label_select=NULL)) imdata_tiny_selected<-imdata[,pixel_selected] imdata_tiny_selected %>% writeMSIData( file="~/expdata/Bovinlens_Trypsin_FT/Bovin_lens_trimmed.imzML", outformat="imzML") library(HiTMaP) datafile=c("Bovinlens_Trypsin_FT/Bovin_lens_trimmed.imzML") wd="~/expdata/" # Data pre-processing and proteomics annotation library(HiTMaP) library(HiTMaP) imaging_identification(datafile=paste0(wd,datafile),Digestion_site="trypsin", Fastadatabase="uniprot-bovin.fasta",output_candidatelist=T, preprocess=list(force_preprocess=TRUE, use_preprocessRDS=TRUE, smoothSignal=list(method="Disable"), reduceBaseline=list(method="Disable"), peakPick=list(method="adaptive"), peakAlign=list(tolerance=5, units="ppm"), normalize=list(method=c("Disable","rms","tic","reference")[1],mz=1)), spectra_segments_per_file=4,use_previous_candidates=T,ppm=5,FDR_cutoff = 0.05,IMS_analysis=T, Rotate_IMG="file_rotationbk.csv",plot_cluster_image_grid=F)
# ptable dev library(curl) library(reshape2) library(dplyr) library(xml2) library(jsonlite) library(IRanges) library(readr) library(Biostrings) library(readxl) library(stringr) library(magick) library(scales) library(BiocParallel) library(HiTMaP) workdir="V:/Bioinformatics/amelia/GluFib/" ptable="psm.tsv" ptable_pipeline=c("fragpipe") target_GroupID=NULL database="uniprot_mouse 3.fasta" missedCleavages=0:1 adducts=c("M+H","M+Na") Decoy_mode=c("isotope") Decoy_search=T BPPARAM=SnowParam(4) mzrange=c(500,4000) output_candidatelist=T use_previous_candidates=F Protein_desc_of_exclusion=NULL Database_stats=F mod_include_conversion<-c('Methyl'="Methylation", 'Thiazolidine'="formaldehyde adduct", 'hydroxymethyl'="hydroxymethyl/formaldehyde induced modifications", 'Deamidation'="Deamidation", 'Formyl'="Formylation", 'Hydroxylation'="Oxidation or Hydroxylation", 'Pyro-glu'="Pyro-glu from Q/Loss of ammonia", 'Acetyl'="N-term(42.0106)" ) mod.df_fix<-HiTMaP:::Peptide_modification(retrive_ID = names(mod_include_conversion)) mod.df_var<-NULL mod.df<-rbind(mod.df_fix,mod.df_var) mod.df_unique<-unique(mod.df[,c("record_id","code_name","full_name","ex_code_name","composition", "mono_mass" )]) Decoy_adducts=c("M+He","M+Ne","M+Ar","M+Kr","M+Xe","M+Rn") Protein_feature_list_table_import(workdir=workdir, ptable=ptable,adducts=adducts, ptable_pipeline=ptable_pipeline,Decoy_mode="isotope", mod_include_conversion=mod_include_conversion, Database_stats=T )
This study has been accepted by Nature Communications:
sessionInfo()
End of the tutorial, Enjoy\~
R Packages used in this project:
viridisLite[\@viridisLite]
rcdklibs[\@rcdklibs]
rJava[\@rJava]
data.table[\@data.table]
RColorBrewer[\@RColorBrewer]
magick[\@magick]
ggplot2[\@ggplot2]
dplyr[\@dplyr]
stringr[\@stringr]
protViz[\@protViz]
cleaver[\@cleaver]
Biostrings[\@Biostrings]
IRanges[\@IRanges]
Cardinal[\@Cardinal]
tcltk[\@tcltk]
BiocParallel[\@BiocParallel]
spdep[\@spdep1]
FTICRMS[\@FTICRMS]
UniProt.ws[\@UniProt.ws]
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.