knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
#Clean workspace and memory ---- rm(list=ls()) gc() #Set working directory ---- gps0=getwd() gps0=paste(gps0,"/%s",sep="") rootDir=gps0 setwd(gsub("%s","",rootDir)) #Load libraries ---- suppressWarnings(suppressMessages( library("Esearch3D", quietly = T) ) ) #Set variables ---- #Set seed to get always the same results out of this vignette set.seed(8) #Set number of cores to parallelize the tasks n_cores=5
#Load and set up the example data ---- data("wg_ann_data_l") #gene - fragment interaction network generated from DNase_Prop1_mESC_TSS interactions data gf_net=wg_ann_data_l$gf_net #gene-fragment-fragment interaction network generated from mESC_DNase_Net interactions data ff_net=wg_ann_data_l$ff_net #sample profile with starting values for genes and fragments generated from mESC_bin_matrix_Prop1 input_m=wg_ann_data_l$input_m #info dataframe containg for each node and fragment the number of enhancer annotations associated to it info=wg_ann_data_l$info #dataframe containg mmu nomenclature about genes mouse_db=wg_ann_data_l$mouse_db
#Process info matrix to get fragments extra information ---- info=get_centr_info(gf_net,ff_net,info) #Convert ENSG to SYMB ---- gf_net[,1]=mapvalues(gf_net[,1],from = mouse_db$ENS, to = mouse_db$Symbol, warn_missing = F) gf_net[,2]=mapvalues(gf_net[,2],from = mouse_db$ENS, to = mouse_db$Symbol, warn_missing = F) ens_row=rownames(input_m);sym_row=mapvalues(ens_row,from = mouse_db$ENS, to = mouse_db$Symbol, warn_missing = F);rownames(input_m)=sym_row #Tuning of propagation setting ----- res_tuning=tuning_prop_vars(gf_net,ff_net,input_m,n_cores=n_cores) #Two step propagation ----- #Propagated for the network gene-fragment gf_prop=rwr_OVprop(g=gf_net,input_m = input_m, no_cores=n_cores, r=res_tuning$best_comb$r1, stop_step = res_tuning$best_comb$stop_iters) #Propagated for the network fragment-fragment ff_prop=rwr_OVprop(g=ff_net,input_m = gf_prop, no_cores=n_cores, r=res_tuning$best_comb$r2, stop_step = res_tuning$best_comb$stop_iters)
#Merge propagation results with meta information about enhancer annotations info=merge_prop_info(ff_prop,info) #Build enhancer classifier and explainer res_ml=enhancer_classifier(info, n_cores=n_cores) res_dalex=explain_classifier(res_ml, n_cores=n_cores) #Plot results res_dalex$fi_ranger_df plot(res_dalex$fi_ranger) plot(res_dalex$bd_ranger_enh) plot(res_dalex$bd_ranger_no) plot(res_dalex$pr_ranger)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.