# The top degradation-associated transcripts using each model was already
# computed in the QSVA_2020 repo at JHPCE; see:
# https://github.com/LieberInstitute/QSVA_2020/blob/a03958532e653c73a5c075be0afcb13a8cf5eeac/code/03_explore_transcripts/00_explore_transcripts_qsva/04_Modeling_NoVoom.R
jhpce_dir <- "/dcs04/lieber/lcolladotor/qSVA_LIBD3080/degradation_experiments/Joint/all"
transcripts_path <- file.path(
jhpce_dir, "preprocessed-data", "03_explore_transcripts", "Sig_Txs.RData"
)
# We want to provide as much information from the degradation DE as
# potentially is useful, but the data is quite large for a Bioc package. To
# balance these constraints, we'll provide just the top 10,000 significant
# transcripts and their adjusted p values for each type of degradation model
top_n = 10000
# Given a data frame of DE results, return the top [top_n] transcripts and
# their adjusted p values as a tibble
get_top_n = function(tx_df, top_n) {
tx_df = tx_df |>
dplyr::rownames_to_column('tx') |>
dplyr::arrange(adj.P.Val) |>
dplyr::select(tx, adj.P.Val) |>
dplyr::slice_head(n = top_n) |>
dplyr::as_tibble()
return(tx_df)
}
load(transcripts_path)
transcripts <- list(
main_model = get_top_n(outTxMain, top_n),
int_model = get_top_n(outTxInt, top_n),
cell_main_model = get_top_n(outTxMainSc, top_n),
cell_int_model = get_top_n(outTxIntSc, top_n)
)
usethis::use_data(transcripts, overwrite = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.