To install cytofkit package, start R and run the following codes on R console:
source("https://bioconductor.org/biocLite.R") biocLite("cytofkit")
Notes
: cytofkit GUI is dependent on XQuartz windowing system (X Windows) on Mac (OS X > 10.7). Install XQuartz from http://xquartz.macosforge.org.
Load the Package:
library("cytofkit")
Read the package description:
?"cytofkit-package"
cytofkit provides three ways to employ the workforce of this package:
The easiest way to use cytofkit package is through the GUI. The GUI provides all main options of cytofkit on a visual interface. To launch the GUI, load the package and type the following command:
cytofkit_GUI()
The interface will appear like below, you can click the information button ! to check the explanation for each entry and customize your own analysis.
Start your analysis as simply as following:
Then submit it, that's all.
Depends on the size of your data, it will take some time to run the analysis. Once done, a window will pop up, showing you the path where the results have been stored, and asking you if open the shiny web APP. If YES, the shiny APP will be deployed locally and opened in your default web browser. Among the saved results, a special R data object with suffix of .RData is for loading the results into the shiny APP. Choose the .RData file on the shiny APP then submit it, your journey of exploring the results starts.
Cytofkit provides a core function cytofkit()
to drive the analysis pipeline of mass cytometry data. Users only need to define several key parameters to start their analysis automatically. One simple example of running cytofkit using the core function is like this:
set.seed(100) dir <- system.file('extdata',package='cytofkit') file <- list.files(dir ,pattern='.fcs$', full=TRUE) parameters <- list.files(dir, pattern='.txt$', full=TRUE) res <- cytofkit(fcsFiles = file, markers = parameters, projectName = 'cytofkit_test', transformMethod = "cytofAsinh", mergeMethod = "ceil", fixedNum = 500, ## set at 500 for faster run dimReductionMethod = "tsne", clusterMethods = c("Rphenograph", "ClusterX"), ## accept multiple methods visualizationMethods = c("tsne", "pca"), ## accept multiple methods progressionMethod = "isomap", clusterSampleSize = 500, resultDir = getwd(), saveResults = TRUE, saveObject = TRUE)
You can customize the parameters for your own need, run ?cytofkit
to get information of all the parameters for cytofkit
. As running with GUI, once the analysis is done, the results will be saved under resultDir
automatically.
You can make use of the functions exported from cytofkit to make your analysis more flexible and fit your own need. Here we use a sample data for demo:
## Loading the FCS data: dir <- system.file('extdata',package='cytofkit') file <- list.files(dir ,pattern='.fcs$', full=TRUE) paraFile <- list.files(dir, pattern='.txt$', full=TRUE) parameters <- as.character(read.table(paraFile, header = TRUE)[,1]) ## File name file ## parameters parameters
## Extract the expression matrix with transformation data_transformed <- cytof_exprsExtract(fcsFile = file, comp = FALSE, transformMethod = "cytofAsinh") ## If analysing flow cytometry data, you can set comp to TRUE or ## provide a transformation matrix to apply compensation ## If you have multiple FCS files, expression can be extracted and combined combined_data_transformed <- cytof_exprsMerge(fcsFiles = file, comp=FALSE, transformMethod = "cytofAsinh", mergeMethod = "all") ## change mergeMethod to apply different combination strategy ## Take a look at the extracted expression matrix head(data_transformed[ ,1:3])
## use clustering algorithm to detect cell subsets ## to speed up our test here, we only use 100 cells data_transformed_1k <- data_transformed[1:100, ] ## run PhenoGraph cluster_PhenoGraph <- cytof_cluster(xdata = data_transformed_1k, method = "Rphenograph") ## run ClusterX data_transformed_1k_tsne <- cytof_dimReduction(data=data_transformed_1k, method = "tsne") cluster_ClusterX <- cytof_cluster(ydata = data_transformed_1k_tsne, method="ClusterX")
## run DensVM (takes long time, we skip here) cluster_DensVM <- cytof_cluster(xdata = data_transformed_1k, ydata = data_transformed_1k_tsne, method = "DensVM")
## run FlowSOM with cluster number 15 cluster_FlowSOM <- cytof_cluster(xdata = data_transformed_1k, method = "FlowSOM", FlowSOM_k = 12) ## combine data data_1k_all <- cbind(data_transformed_1k, data_transformed_1k_tsne, PhenoGraph = cluster_PhenoGraph, ClusterX=cluster_ClusterX, FlowSOM=cluster_FlowSOM) data_1k_all <- as.data.frame(data_1k_all)
## PhenoGraph plot on tsne cytof_clusterPlot(data=data_1k_all, xlab="tsne_1", ylab="tsne_2", cluster="PhenoGraph", sampleLabel = FALSE) ## PhenoGraph cluster heatmap PhenoGraph_cluster_median <- aggregate(. ~ PhenoGraph, data = data_1k_all, median) cytof_heatmap(PhenoGraph_cluster_median[, 2:37], baseName = "PhenoGraph Cluster Median")
## ClusterX plot on tsne cytof_clusterPlot(data=data_1k_all, xlab="tsne_1", ylab="tsne_2", cluster="ClusterX", sampleLabel = FALSE) ## ClusterX cluster heatmap ClusterX_cluster_median <- aggregate(. ~ ClusterX, data = data_1k_all, median) cytof_heatmap(ClusterX_cluster_median[, 2:37], baseName = "ClusterX Cluster Median")
## FlowSOM plot on tsne cytof_clusterPlot(data=data_1k_all, xlab="tsne_1", ylab="tsne_2", cluster="FlowSOM", sampleLabel = FALSE) ## FlowSOM cluster heatmap FlowSOM_cluster_median <- aggregate(. ~ FlowSOM, data = data_1k_all, median) cytof_heatmap(FlowSOM_cluster_median[, 2:37], baseName = "FlowSOM Cluster Median")
## Inference of PhenoGraph cluster relatedness PhenoGraph_progression <- cytof_progression(data = data_transformed_1k, cluster = cluster_PhenoGraph, method="isomap", clusterSampleSize = 50, sampleSeed = 5) p_d <- data.frame(PhenoGraph_progression$sampleData, PhenoGraph_progression$progressionData, cluster = PhenoGraph_progression$sampleCluster, check.names = FALSE) ## cluster relatedness plot cytof_clusterPlot(data=p_d, xlab="isomap_1", ylab="isomap_2", cluster="cluster", sampleLabel = FALSE) ## marker expression profile markers <- c("(Sm150)Di<GranzymeB>", "(Yb173)Di<Perforin>") cytof_colorPlot(data=p_d, xlab="isomap_1", ylab="isomap_2", zlab = markers[1], limits = range(p_d[,1:52])) cytof_colorPlot(data=p_d, xlab="isomap_1", ylab="isomap_2", zlab = markers[2], limits = range(p_d[,1:52])) cytof_progressionPlot(data=p_d, markers=markers, orderCol="isomap_1", clusterCol = "cluster")
## Inference of ClusterX cluster relatedness ClusterX_progression <- cytof_progression(data = data_transformed_1k, cluster = cluster_ClusterX, method="isomap", clusterSampleSize = 30, sampleSeed = 3) c_d <- data.frame(ClusterX_progression$sampleData, ClusterX_progression$progressionData, cluster=ClusterX_progression$sampleCluster, check.names = FALSE) ## cluster relatedness plot cytof_clusterPlot(data=c_d, xlab="isomap_1", ylab="isomap_2", cluster="cluster", sampleLabel = FALSE) ## marker expression profile markers <- c("(Sm150)Di<GranzymeB>", "(Yb173)Di<Perforin>") cytof_colorPlot(data=c_d, xlab="isomap_1", ylab="isomap_2", zlab = markers[1], limits = range(c_d[,1:52])) cytof_colorPlot(data=c_d, xlab="isomap_1", ylab="isomap_2", zlab = markers[2], limits = range(c_d[,1:52])) cytof_progressionPlot(data=c_d, markers, orderCol="isomap_1", clusterCol = "cluster")
## save analysis results to FCS file cytof_addToFCS(data_1k_all, rawFCSdir=dir, analyzedFCSdir="analysed_FCS", transformed_cols = c("tsne_1", "tsne_2"), cluster_cols = c("PhenoGraph", "ClusterX", "FlowSOM"))
In addition, expression values for cells in a specified cluster can be extracted using cytof_clusterMtrx()
## See documentation, this function uses the output of main cytofkit cuntion as its input ?cytof_clusterMtrx
cytofkitNews()
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.