R/gdcKMPlot.R

Defines functions gdcKMPlot

Documented in gdcKMPlot

##' @title Kaplan Meier plot
##' @description Plot Kaplan Meier survival curve
##' @param gene an Ensembl gene id
##' @param rna.expr \code{\link[limma]{voom}} transformed expression data
##' @param metadata metadata parsed from \code{\link{gdcParseMetadata}}
##' @param sep a character string specifying which point should be used to 
##'     separate low-expression and high-expression groups. Possible values 
##'     are \code{'1stQu'}, \code{'mean'}, \code{'median'}, 
##'     and \code{'3rdQu'}. Default is \code{'median'} 
##' @importFrom survival survfit
##' @importFrom survival survdiff
##' @importFrom survminer ggsurvplot
##' @return A plot of Kaplan Meier survival curve
##' @export
##' @author Ruidong Li and Han Qu
##' @examples 
##' ####### KM plots #######
##' genes <- c('ENSG00000000938','ENSG00000000971','ENSG00000001036',
##'         'ENSG00000001084','ENSG00000001167','ENSG00000001460')
##' 
##' samples <- c('TCGA-2F-A9KO-01', 'TCGA-2F-A9KP-01',
##'             'TCGA-2F-A9KQ-01', 'TCGA-2F-A9KR-01',
##'             'TCGA-2F-A9KT-01', 'TCGA-2F-A9KW-01')
##'              
##' metaMatrix <- data.frame(sample_type=rep('PrimaryTumor',6),
##'                         sample=samples,
##'                         days_to_death=seq(100,600,100),
##'                         days_to_last_follow_up=rep(NA,6))
##' rnaExpr <- matrix(c(2.7,7.0,4.9,6.9,4.6,2.5,
##'                     0.5,2.5,5.7,6.5,4.9,3.8,
##'                     2.1,2.9,5.9,5.7,4.5,3.5,
##'                     2.7,5.9,4.5,5.8,5.2,3.0,
##'                     2.5,2.2,5.3,4.4,4.4,2.9,
##'                     2.4,3.8,6.2,3.8,3.8,4.2),6,6)
##' rownames(rnaExpr) <- genes
##' colnames(rnaExpr) <- samples
##' gdcKMPlot(gene='ENSG00000000938', rna.expr=rnaExpr, 
##'     metadata=metaMatrix, sep='median')
gdcKMPlot <- function(gene, rna.expr, metadata, sep='median') {
    
    metadata <- metadata[metadata$sample_type=='PrimaryTumor',]
    
    samples = intersect(colnames(rna.expr), metadata$sample)
    
    exprDa=rna.expr[gene,samples]
    
    
    if (sep=='1stQu') {
        thresh <- as.numeric(summary(exprDa)[2])
    } else if (sep=='median') {
        thresh <- as.numeric(summary(exprDa)[3])
    } else if (sep=='mean') {
        thresh <- as.numeric(summary(exprDa)[4])
    } else if (sep=='3rdQu') {
        thresh <- as.numeric(summary(exprDa)[5])
    }
    
    exprGroup <- exprDa > thresh
    
    nH <- sum(exprGroup)
    nL <- sum(!exprGroup)
    
    clinicalDa=metadata[match(samples,metadata$sample),]
    
    daysToDeath <- as.numeric(clinicalDa$days_to_death)
    nonComplt <- is.na(daysToDeath)
    
    vitalStatus <- as.numeric(ifelse(nonComplt, 0, 1))
    daysToDeath[nonComplt] <- 
        as.numeric(clinicalDa$days_to_last_follow_up[nonComplt])
    
    survDa <- data.frame(daysToDeath,vitalStatus, exprGroup)
    
    sdf <- survdiff(Surv(daysToDeath, vitalStatus) ~ exprGroup)
    pValue <- format(pchisq(sdf$chisq, length(sdf$n)-1, 
                            lower.tail = FALSE),digits=3)
    #pValue <- format(1-pchisq(sdf$chisq, df=1),digits=3)
    
    HR = (sdf$obs[2]/sdf$exp[2])/(sdf$obs[1]/sdf$exp[1])
    upper95 = exp(log(HR) + qnorm(0.975)*sqrt(1/sdf$exp[2]+1/sdf$exp[1]))
    lower95 = exp(log(HR) - qnorm(0.975)*sqrt(1/sdf$exp[2]+1/sdf$exp[1]))
    
    HR <- format(HR, digits = 3)
    upper95 <- format(upper95, digits = 3)
    lower95 <- format(lower95, digits = 3)
    
    
    label1 <- paste('HR = ', HR, ' (', lower95, '-', upper95, ')', sep='')
    label2 <- paste('logrank P value = ', pValue, sep='')
    
    fit <- survfit(Surv(daysToDeath, vitalStatus) ~ exprGroup, data=survDa)
    
    lgdXpos <- 1/1.3
    lgdYpos = 0.9
    
    xpos = max(daysToDeath, na.rm=TRUE)/1.8
    ypos1 = 0.8
    
    ypos2 = 0.75
    
    ggsurvplot(fit, data=survDa, pval = paste(label1, '\n', label2), pval.coord = c(xpos, ypos1),
               pval.size=5,
               font.main = c(16, 'bold', 'black'), conf.int = FALSE, 
               #title = project,
               legend = c(lgdXpos, lgdYpos), 
               #color = c('blue', 'green'),
               palette= c('blue', 'red'),
               legend.labs = c(paste('lowExp (N=',nL,')',sep=''), 
                               paste('highExp  (N=',nH,')',sep='')),  
               legend.title='group',
               xlab = paste('Overall survival (days)'), ylab = 'Survival probability',
               #xlab = paste(type,'(months)'), ylab = 'Survival probability',
               font.x = c(16), font.y = c(16), ylim=c(0,1), #16
               ggtheme = theme_bw()+ theme(axis.line = element_line(colour = "black"),
                                           panel.grid.major = element_blank(),
                                           panel.grid.minor = element_blank(),
                                           #panel.border = element_rect(colour='black'),
                                           panel.border = element_blank(),
                                           panel.background = element_blank(),
                                           legend.text = element_text(size=12),#14
                                           legend.title = element_text(size=14),
                                           axis.text = element_text(size=14, color='black'))) #+
    #ggplot2::annotate("text", x = xpos, y = ypos1,
    #                  label = label1, size = 5) + #5.2
    #ggplot2::annotate("text", x = xpos, y = ypos2,
    #                  label = label2, size = 5)
    #ggplot2::geom_text(x = xpos, y = ypos1,label = label1, size=5)
    
}
Jialab-UCR/GDCRNATools documentation built on Nov. 28, 2020, 11:23 a.m.