##' @title Kaplan Meier plot
##' @description Plot Kaplan Meier survival curve
##' @param gene an Ensembl gene id
##' @param rna.expr \code{\link[limma]{voom}} transformed expression data
##' @param metadata metadata parsed from \code{\link{gdcParseMetadata}}
##' @param sep a character string specifying which point should be used to
##' separate low-expression and high-expression groups. Possible values
##' are \code{'1stQu'}, \code{'mean'}, \code{'median'},
##' and \code{'3rdQu'}. Default is \code{'median'}
##' @importFrom survival survfit
##' @importFrom survival survdiff
##' @importFrom survminer ggsurvplot
##' @return A plot of Kaplan Meier survival curve
##' @export
##' @author Ruidong Li and Han Qu
##' @examples
##' ####### KM plots #######
##' genes <- c('ENSG00000000938','ENSG00000000971','ENSG00000001036',
##' 'ENSG00000001084','ENSG00000001167','ENSG00000001460')
##'
##' samples <- c('TCGA-2F-A9KO-01', 'TCGA-2F-A9KP-01',
##' 'TCGA-2F-A9KQ-01', 'TCGA-2F-A9KR-01',
##' 'TCGA-2F-A9KT-01', 'TCGA-2F-A9KW-01')
##'
##' metaMatrix <- data.frame(sample_type=rep('PrimaryTumor',6),
##' sample=samples,
##' days_to_death=seq(100,600,100),
##' days_to_last_follow_up=rep(NA,6))
##' rnaExpr <- matrix(c(2.7,7.0,4.9,6.9,4.6,2.5,
##' 0.5,2.5,5.7,6.5,4.9,3.8,
##' 2.1,2.9,5.9,5.7,4.5,3.5,
##' 2.7,5.9,4.5,5.8,5.2,3.0,
##' 2.5,2.2,5.3,4.4,4.4,2.9,
##' 2.4,3.8,6.2,3.8,3.8,4.2),6,6)
##' rownames(rnaExpr) <- genes
##' colnames(rnaExpr) <- samples
##' gdcKMPlot(gene='ENSG00000000938', rna.expr=rnaExpr,
##' metadata=metaMatrix, sep='median')
gdcKMPlot <- function(gene, rna.expr, metadata, sep='median') {
metadata <- metadata[metadata$sample_type=='PrimaryTumor',]
samples = intersect(colnames(rna.expr), metadata$sample)
exprDa=rna.expr[gene,samples]
if (sep=='1stQu') {
thresh <- as.numeric(summary(exprDa)[2])
} else if (sep=='median') {
thresh <- as.numeric(summary(exprDa)[3])
} else if (sep=='mean') {
thresh <- as.numeric(summary(exprDa)[4])
} else if (sep=='3rdQu') {
thresh <- as.numeric(summary(exprDa)[5])
}
exprGroup <- exprDa > thresh
nH <- sum(exprGroup)
nL <- sum(!exprGroup)
clinicalDa=metadata[match(samples,metadata$sample),]
daysToDeath <- as.numeric(clinicalDa$days_to_death)
nonComplt <- is.na(daysToDeath)
vitalStatus <- as.numeric(ifelse(nonComplt, 0, 1))
daysToDeath[nonComplt] <-
as.numeric(clinicalDa$days_to_last_follow_up[nonComplt])
survDa <- data.frame(daysToDeath,vitalStatus, exprGroup)
sdf <- survdiff(Surv(daysToDeath, vitalStatus) ~ exprGroup)
pValue <- format(pchisq(sdf$chisq, length(sdf$n)-1,
lower.tail = FALSE),digits=3)
#pValue <- format(1-pchisq(sdf$chisq, df=1),digits=3)
HR = (sdf$obs[2]/sdf$exp[2])/(sdf$obs[1]/sdf$exp[1])
upper95 = exp(log(HR) + qnorm(0.975)*sqrt(1/sdf$exp[2]+1/sdf$exp[1]))
lower95 = exp(log(HR) - qnorm(0.975)*sqrt(1/sdf$exp[2]+1/sdf$exp[1]))
HR <- format(HR, digits = 3)
upper95 <- format(upper95, digits = 3)
lower95 <- format(lower95, digits = 3)
label1 <- paste('HR = ', HR, ' (', lower95, '-', upper95, ')', sep='')
label2 <- paste('logrank P value = ', pValue, sep='')
fit <- survfit(Surv(daysToDeath, vitalStatus) ~ exprGroup, data=survDa)
lgdXpos <- 1/1.3
lgdYpos = 0.9
xpos = max(daysToDeath, na.rm=TRUE)/1.8
ypos1 = 0.8
ypos2 = 0.75
ggsurvplot(fit, data=survDa, pval = paste(label1, '\n', label2), pval.coord = c(xpos, ypos1),
pval.size=5,
font.main = c(16, 'bold', 'black'), conf.int = FALSE,
#title = project,
legend = c(lgdXpos, lgdYpos),
#color = c('blue', 'green'),
palette= c('blue', 'red'),
legend.labs = c(paste('lowExp (N=',nL,')',sep=''),
paste('highExp (N=',nH,')',sep='')),
legend.title='group',
xlab = paste('Overall survival (days)'), ylab = 'Survival probability',
#xlab = paste(type,'(months)'), ylab = 'Survival probability',
font.x = c(16), font.y = c(16), ylim=c(0,1), #16
ggtheme = theme_bw()+ theme(axis.line = element_line(colour = "black"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
#panel.border = element_rect(colour='black'),
panel.border = element_blank(),
panel.background = element_blank(),
legend.text = element_text(size=12),#14
legend.title = element_text(size=14),
axis.text = element_text(size=14, color='black'))) #+
#ggplot2::annotate("text", x = xpos, y = ypos1,
# label = label1, size = 5) + #5.2
#ggplot2::annotate("text", x = xpos, y = ypos2,
# label = label2, size = 5)
#ggplot2::geom_text(x = xpos, y = ypos1,label = label1, size=5)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.