#' @title Summarizing harman results.
#' @description Summary method for class \code{\link{harmanresults}}.
#' @param object An object of class \code{harmanresults}.
#' @param ... further parameters.
#' @return Returns an object of class \code{summary.harmanresults}.
#' @seealso \code{\link{harmanresults}}
#' @examples
#' library(HarmanData)
#' data(OLF)
#' expt <- olf.info$Treatment
#' batch <- olf.info$Batch
#' olf.harman <- harman(olf.data, expt, batch)
#' summary(olf.harman)
#' @export
summary.harmanresults <- function(object, ...) {
# 1) % of the variance removed.
# 2) Sequence of corrections from the 1st to last PC
# 3) Confidence threshold
# 4) Whether is was balanced or not
# 5) Parameters
# 6) Batch structure
ans <- list()
ans$totals <- c(length(levels(object$factors$expt)),
length(levels(object$factors$batch))
)
names(ans$totals) <- c('expt', 'batch')
ans$factor_table <- table(expt=object$factors$expt,
batch=object$factors$batch)
ans$parameters <- object$parameters
ans$correction <- object$stats$correction
names(ans$correction) <- object$stats$dimension
class(ans) <- c("summary.harmanresults")
ans
}
#' @title Printing Harmanresults summaries.
#' @param x an object of class \code{summary.harmanresults}, usually, a result
#' of a call to \code{summary.harmanresults}.
#' @param ... further parameters.
#' @description Print method for \code{summary.harmanresults}.
#' @return Prints summary information from an object of class
#' \code{summary.harmanresults}.
#' @export
print.summary.harmanresults <- function(x, ...) {
cat('Total factor levels:\n\n')
print(x$totals)
cat('\nExperiment x Batch Design:\n\n')
print(x$factor_table)
cat('\nSimulation parameters:\n')
cat(x$parameters$numrepeats, ' simulations (with seed of ',
x$parameters$randseed, '). ForceRand is ', x$parameters$forceRand, '.\n',
sep='')
cat('\nHarman results with confidence limit of ', x$parameters$limit, ':\n',
sep='')
print(x$correction)
cat('\nTop batch-effected PCs:\n')
top <- sort(x$correction)
top <- top[top < 1]
ntop <- min(5, length(top))
if(ntop > 0) {
print(top[1:ntop])
} else {
cat('None, all have no correction with this confidence limit\n')
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.