R/read_STAR.R

Defines functions read_STAR

Documented in read_STAR

#' Read STAR log files
#'
#' Read STAR Log.final.out files and optionally reshape into wide format.
#'
#' @param path the path to STAR log files, the default corresponds to the working directory.
#' @param pattern regular expression for file name matching, default .final.out
#' @param reshape reshape percent mapping into wide format with samples in rows
#'
#' @note Reading output files requires a unique sample identifier in either the file name or parent directory
#'
#' @return A tibble
#'
#' @author Chris Stubben
#'
#' @examples
#' \dontrun{
#'  x <- read_STAR( pattern=".star.out$")
#'   reads <- c("Uniquely mapped",  "Mapped to multiple loci",
#'                "Mapped to too many loci", "Unmapped reads")
#'   y <- filter(x, stat %in% reads) %>% mutate( stat= factor(stat, levels=reads ))
#'          hchart(y, "bar", x=sample ,  y=value, group=stat ) %>%
#'             hc_plotOptions(bar = list(stacking = "normal")) %>%
#'              hc_colors( c('#437bb1', '#7cb5ec', '#f7a35c', '#b1084c') ) %>%
#'                hc_yAxis(reversedStacks = FALSE)
#'  read_STAR( pattern=".star.out$", reshape=TRUE)
#' }
#' @export

read_STAR <- function( path=".", pattern, reshape=FALSE){
   if(missing(pattern))  pattern <- "\\.final.out$"
   # suppress warnings about subheaders....  Warning: 4 parsing failures.
   x <- suppressWarnings( read_sample_files(path, pattern, col_names=c("stat", "value") , skip=5, trim_ws=TRUE ))

   x <- dplyr::filter(x, !is.na(value)) %>%                    # drop subheader with NA value ... UNIQUE READS:
  dplyr::mutate( stat = gsub(" \\|$", "", stat),              # remove pipe from end of statistic
                 stat = gsub("Number of reads m", "M", stat), # shorten  Number of reads mapped to...
                 stat = gsub(" reads number", "", stat),      #  shorten Uniquely mapped reads number
                value = gsub("%", "", value),                 # drop % from value
                value = as.numeric(value))                    # change value to numeric

   # ADD unmapped reads  -
   mapped <- c("Uniquely mapped",  "Mapped to multiple loci", "Mapped to too many loci" )
   # see http://stackoverflow.com/questions/40749742/add-missing-subtotals-to-each-group-using-dplyr
   x <- dplyr::group_by(x, sample) %>%
          dplyr::summarize(  value = value[stat == 'Number of input reads'] - sum(value[stat %in% mapped ]),
                     stat = 'Unmapped reads' ) %>%
          dplyr::bind_rows(x) %>%
           dplyr::select(sample, stat, value) %>%  # back to original column order
            dplyr::arrange(sample)

   ##  split unmapped reads into too many mismatches, too short and  other?
   #  divide %unmapped too short  by total %unmapped  and muliply by Unmapped reads to get estimate

   if(reshape){
      n <- c(mapped,  "Unmapped reads", "Number of input reads" )
      x <- dplyr::filter(x, stat %in% n) %>%
            dplyr::mutate( stat = factor(stat, levels= n)) %>%
             tidyr::spread( stat, value)  %>%
              dplyr::mutate_each( dplyr::funs(as.integer ) , -1)
   }
   x
}
HuntsmanCancerInstitute/hciR documentation built on Dec. 10, 2024, 12:22 p.m.