#' @title Analysis of Similarity (ANOSIM)
#'
#' @description
#' The `run_ANOSIM` function is used to identify the association between
#' the community and environmental variables by rank.
#'
#' @details
#' The `run_ANOSIM` function is used to identify the association between
#' the community and environmental variables by rank, applying the distance
#' in profile and calculating the R statistic between community and rank variable
#' by permutation test to determine the significance. It can be applied to both
#' [`phyloseq::phyloseq-class`] and [`SummarizedExperiment::SummarizedExperiment`] object.
#'
#' @references Clarke, K. Robert. "Nonāparametric multivariate analyses of
#' changes in community structure." Australian journal of ecology 18.1
#' (1993): 117-143.
#'
#' @author Created by Hua Zou (5/15/2022 Shenzhen China)
#'
#' @param object (Required). a [`phyloseq::phyloseq-class`] or
#' [`SummarizedExperiment::SummarizedExperiment`] object.
#' @param level (Optional). character. Summarization
#' level (from \code{rank_names(pseq)}, default: NULL).
#' @param variable (Required). character. grouping variable for test.
#' @param method (Optional). character. Provide one of the currently supported
#' options. See `distanceMethodList` for a detailed list of the supported options
#' and links to accompanying documentation. Options include:
#' * "bray": bray crutis distance.
#' * "unifrac" : unweighted UniFrac distance.
#' * "wunifrac": weighted-UniFrac distance.
#' * "GUniFrac": The variance-adjusted weighted UniFrac distances (default: alpha=0.5).
#' * "dpcoa": sample-wise distance used in Double Principle Coordinate Analysis.
#' * "jsd": Jensen-Shannon Divergence.
#' Alternatively, you can provide a character string that defines a custom
#' distance method, if it has the form described in `designdist` (default: "bray").
#' @param seedNum (Optional). numeric. specify seeds for reproduction (default: 123).
#' @param alpha (Optional). numeric. the parameter for "GUniFrac" controlling
#' weight on abundant lineages (default: 0.5).
#'
#' @return
#' An ANOSIM model.
#'
#' @importFrom vegan vegdist anosim
#' @importFrom tibble column_to_rownames column_to_rownames
#' @importFrom SummarizedExperiment colData assay
#' @importFrom stats setNames p.adjust
#'
#' @usage run_ANOSIM(
#' object,
#' level = c(NULL, "Kingdom", "Phylum", "Class",
#' "Order", "Family", "Genus",
#' "Species", "Strain", "unique"),
#' variable,
#' method = c("unifrac", "wunifrac", "GUniFrac", "bray", "dpcoa", "jsd"),
#' seedNum = 123,
#' alpha = 0.5)
#'
#' @export
#'
#' @examples
#'
#' \dontrun{
#'
#' # phyloseq object
#' data("Zeybel_2022_gut")
#' run_ANOSIM(Zeybel_2022_gut,
#' level = "Phylum",
#' variable = "LiverFatClass",
#' method = "bray")
#'
#' # SummarizedExperiment object
#' data("Zeybel_2022_protein")
#' run_ANOSIM(Zeybel_2022_protein,
#' variable = "LiverFatClass",
#' method = "bray")
#' }
#'
run_ANOSIM <- function(
object,
level = NULL,
variable,
method = c("bray", "unifrac", "wunifrac",
"GUniFrac", "dpcoa", "jsd"),
seedNum = 123,
alpha = 0.5) {
# data("Zeybel_2022_gut")
# object = Zeybel_2022_gut
# level = "Phylum"
# variable = "LiverFatClass"
# method = "bray"
# seedNum = 123
# alpha = 0.5
# data("Zeybel_2022_protein")
# object = Zeybel_2022_protein
# level = NULL
# variable = "LiverFatClass"
# method = "bray"
# seedNum = 123
# alpha = 0.5
method <- match.arg(
method, c("bray", "unifrac", "wunifrac",
"GUniFrac", "dpcoa", "jsd")
)
# phyloseq object
if (all(!is.null(object), inherits(object, "phyloseq"))) {
ps <- check_sample_names(object = object)
# taxa level
if (!is.null(level)) {
ps <- aggregate_taxa(x = ps, level = level)
} else {
ps <- ps
}
if (!is.null(ps@phy_tree) & (method %in%
c("unifrac", "wunifrac", "GUniFrac"))) {
method <- match.arg(
method,
c("unifrac", "wunifrac", "GUniFrac")
)
} else if (method %in% c("unifrac", "wunifrac", "GUniFrac")) {
message("It enforces to use Bray-Curtis because no phy_tree")
method <- "bray"
}
## sample table & profile table
sam_tab <- phyloseq::sample_data(ps) %>%
data.frame() %>%
tibble::rownames_to_column("TempRowNames")
if (phyloseq::taxa_are_rows(ps)) {
prf_tab <- phyloseq::otu_table(phyloseq::t(ps)) %>%
data.frame()
} else {
prf_tab <- phyloseq::otu_table(ps) %>%
data.frame()
}
} else if (all(!is.null(object), inherits(object, "SummarizedExperiment"))) {
# sample table & profile table
sam_tab <- SummarizedExperiment::colData(object) %>%
data.frame() %>%
tibble::rownames_to_column("TempRowNames")
prf_tab <- SummarizedExperiment::assay(object) %>%
data.frame() %>%
t()
}
# distance
disMatrix <- run_distance(object = object,
method = method,
alpha = alpha)
# grouping variable for test
if (variable %in% colnames(sam_tab)) {
colnames(sam_tab)[which(colnames(sam_tab) == variable)] <- "GroupVar"
} else {
stop(variable, " no exist in columns of metadata Please check your input")
}
ANOSIM_core <- function(x, data_distance, profile){
dat <- data.frame(value = x, profile)
na_index <- which(is.na(dat$value))
if (!length(na_index) == 0) {
datphe <- dat$value[-na_index]
if (length(datphe) == 0 | length(unique(datphe)) == 1) {
res <- NA
}
if (length(unique(datphe)) < 6) {
datphe <- as.factor(datphe)
}
dat_cln <- dat[-na_index, ]
datprf <- dat_cln[, -1, F]
dis <- vegan::vegdist(datprf, method = method, na.rm = TRUE)
} else {
datphe <- dat$value
if (length(datphe) == 0 | length(unique(datphe)) == 1) {
res <- NA
}
if (length(unique(datphe)) < 6) {
datphe <- as.factor(datphe)
}
dis <- data_distance
}
# set seed
if (!is.null(seedNum)) {
set.seed(seedNum)
}
ANOSIM_res <- vegan::anosim(dis, datphe, permutations = 999)
return(ANOSIM_res)
}
res <- ANOSIM_core(x = sam_tab$GroupVar,
data_distance = disMatrix,
profile = prf_tab)
return(res)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.