tests/findPeaksAndValleys.R

library("aroma.light")

layout(matrix(1:3, ncol=1))
par(mar=c(2,4,4,1)+0.1)

# - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# A unimodal distribution
# - - - - - - - - - - - - - - - - - - - - - - - - - - - -
x1 <- rnorm(n=10000, mean=0, sd=1)
x <- x1
fit <- findPeaksAndValleys(x)
print(fit)
plot(density(x), lwd=2, main="x1")
abline(v=fit$x)

# - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# A trimodal distribution
# - - - - - - - - - - - - - - - - - - - - - - - - - - - -
x2 <- rnorm(n=10000, mean=4, sd=1)
x3 <- rnorm(n=10000, mean=8, sd=1)
x <- c(x1,x2,x3)
fit <- findPeaksAndValleys(x)
print(fit)
plot(density(x), lwd=2, main="c(x1,x2,x3)")
abline(v=fit$x)


# - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# A trimodal distribution with clear separation
# - - - - - - - - - - - - - - - - - - - - - - - - - - - -
x1b <- rnorm(n=10000, mean=0, sd=0.1)
x2b <- rnorm(n=10000, mean=4, sd=0.1)
x3b <- rnorm(n=10000, mean=8, sd=0.1)
x <- c(x1b,x2b,x3b)

# Illustrating explicit usage of density()
d <- density(x)
fit <- findPeaksAndValleys(d, tol=0)
print(fit)
plot(d, lwd=2, main="c(x1b,x2b,x3b)")
abline(v=fit$x)
HenrikBengtsson/aroma.light-BioC_release documentation built on May 7, 2019, 1:55 a.m.