#' Stouffer
#'
#' @description Stouffer's Z-score method
#'
#' @param pvals A vector of p-values
#' @param weights A vector of weights
#' @param side How the p-values were generated. One of 'right',
#' 'left' or 'two'.
#' @examples
#' pvals <- runif(100, 0, 1)
#' weights <- runif(100, 0, 1)
#' stouffer_zscore(pvals, weights)
#' @details
#' Given a set of i.i.d p-values and associated weights, it combines the
#' p-values \eqn{p_i}. Letting \eqn{\phi} be the standard normal cumulative distribution function
#' and \eqn{Z_i =\phi^{-1} (1-p_i)}, the meta-analysis Z-score is
#'
#' \deqn{Z = (\sum w_i Z_i) * (\sum (w_i)^2)^(-1/2)}
#' @md
#' @references
#' Samuel Andrew Stouffer. *Adjustment during army life*. Princeton University Press, 1949.
#' @return
#' A list containing the following components:
#' \itemize{
#' \item *statistic* the value of the test statistic.
#' \item *p.value* the p-value of the test.
#' }
#' @export
#' @importFrom stats qnorm pnorm
stouffer_zscore <- function(pvals, weights = rep(1, seq_along(pvals)),
side = "two") {
if(length(pvals) != length(weights)) {
stop("pvals and weights must have the same length")
}
if (!side %in% c('left', 'right', 'two')) stop("wrong side argument")
if (side == 'left') {
pvals <- 1 - pvals
} else if (side == 'two') {
pvals <- pvals / 2
}
Zs <- lapply(pvals, function(pval) {
return(stats::qnorm(pval, lower.tail = FALSE))
}) %>%
unlist()
Z <- sum(Zs * weights) / sqrt(sum(weights^2))
return(list("statistic" = Z, "p.value" = stats::pnorm(Z, lower.tail = FALSE)))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.