title: "Apply mvBIC to SEQC data" subtitle: '' author: "Developed by Gabriel Hoffman" date: "Run on r Sys.time()" documentclass: article output: html_document: toc: true smart: false vignette: > %\VignetteIndexEntry{Gene set enrichment from genomic intervals} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} %\usepackage[utf8]{inputenc}


suppressPackageStartupMessages(library(knitr))
suppressPackageStartupMessages(library(edgeR))
suppressPackageStartupMessages(library(data.table))
suppressPackageStartupMessages(library(variancePartition))
suppressPackageStartupMessages(library(GenomicRanges)) 
suppressPackageStartupMessages(library(Matrix)) 
suppressPackageStartupMessages(library(recount)) 
suppressPackageStartupMessages(library(gridExtra)) 
suppressPackageStartupMessages(library(gtable))
suppressPackageStartupMessages(library(ggrepel))

options(xtable.type="html")

setDTthreads(3, restore_after_fork=FALSE)

knitr::opts_chunk$set(
  echo=FALSE,
  warning=FALSE,
  message=TRUE,
  error = FALSE,
  tidy = FALSE,
  cache = TRUE,
  cache.lazy = FALSE,  dev = c("png", "pdf"), 
  fig.width=7, fig.height=7)

options(markdown.HTML.stylesheet = 'css/custom.css')
suppressPackageStartupMessages(library(pinnacle))
# url <- download_study('SRP025982')

## Load the data
load(file.path('./SRP025982', 'rse_gene.Rdata'))
## Scale counts
rse <- scale_counts(rse_gene)

# format metadata
info = lapply(colData(rse)$characteristics, function(x){

  lst = strsplit(x,':')
  df = t(do.call(rbind, lst))
  colnames(df) = gsub(' ', "_", df[1,])
  gsub('^ ', "", df[2,])
})
info = do.call(rbind, info)

info = data.frame(run = colData(rse)$run, info, stringsAsFactors=FALSE)
# get subset of experiments from sample A
idx = with(info, (seqc_sample %in% c('A')))
table(idx)

design = model.matrix( ~ library_id, info[idx,])
rseSubset = rse[,idx]

# filter by expression level
isexpr = rowSums(cpm(assay(rse))>4) >= 0.8*ncol(rseSubset)
table(isexpr)

# Standard usage of limma/voom
countObj = DGEList( assay(rseSubset)[isexpr,] )
# convert to base ENSEMBL id's
rownames(countObj) = sapply(strsplit(rownames(countObj), '\\.'), function(x) x[1])

vobj = voom( countObj, design, plot=TRUE )

Model selection with mvBIC

library(mvBIC)

rseSubset = rse[,idx]
infoSub = info[idx,]

# filter by expression level
isexpr = rowSums(cpm(assay(rseSubset))>1) >= 0.2*ncol(rseSubset)

# Get counts for genes and use TMM normalization
countObj = DGEList( assay(rseSubset)[isexpr,] )
countObj = calcNormFactors(countObj)

# get log counts per million
geneExpr = cpm( countObj, log=TRUE)

# variables = c("seqc_sample", "(1|site)", "(1|site:library_id)", "(1|site/library_id/lane)", "(1|site/library_id/lane/barcode)")
variables = c("seqc_sample", "site", "(1|site:library_id)")

bestModel = mvForwardStepwise( geneExpr[1:100,], ~1, infoSub, variables)

do GEUVADIS, SEQC, GTEX, CMCv2 + simulations Compare to summing standard BIC

Simulation, show probability of selection true model increases with number of features

compare to sum of BIC

devtools::reload("/Users/gabrielhoffman/workspace/repos/mvBIC")

n = 100 p = 200 m = 1 X = matrix(rnorm(np), n, p) colnames(X) = paste0('X_', 1:p) beta = matrix(rnorm(mp, 10), m,p) Noise = matrix(rnorm(np), n, p) Y = X[,1:m] %% beta + Noise trueSet = sort(colnames(X)[1:m]) hist(cor(t(Y)))

bestModel = mvForwardStepwise( t(Y), ~1, X, colnames(X))

bestModelNaive = mvForwardStepwise( t(Y), ~1, X, colnames(X), useMVBIC=FALSE)

library(poolr) library(mvBIC) library(ggplot2) library(data.table)

n_reps = 10 n = 100 p = 200 m = 1 X = matrix(rnorm(np), n, p) colnames(X) = paste0('X_', 1:p) trueSet = sort(colnames(X)[1:m]) beta = matrix(rnorm(mp, 10), m,p)

summary(lm(Y~X[,1]))

lapply(coef(summary(lm(Y~X[,1]))), function(fit) fit[2,4])

resRecovery = lapply(1:n_reps, function(k){

set.seed(k) Noise = matrix(rnorm(n*p), n, p)

eta = X[,1:m] %*% beta

resRecovery = lapply( seq(30, 60, length.out=8), function(s){

Y = eta + Noise*s

# get effective sample dimension
dim_eff = meff(cor(Y), method="nyholt")

cat("\rk =", k, '  s =', s, '  meff = ', dim_eff, '    ')

# try 3 logDet methods
methods = c( "Strimmer", "Touloumis_equal", "Touloumis_unequal", "pseudodet")  
res = sapply( methods, function(method){
  bestModel = mvForwardStepwise( t(Y), ~1, X, colnames(X), verbose=FALSE, logDetMethod=method)
  # test of selected set is the true set
  vars = subset(bestModel$trace, isAdded == "yes")$variable
  vars = as.character(vars)
  identical( sort(vars), trueSet)
  })
names(res) = methods

# fit naive model
bestModelNaive = mvForwardStepwise( t(Y), ~1, X, colnames(X), useMVBIC=FALSE, verbose=FALSE)

# test of selected set is the true set
vars = subset(bestModelNaive$trace, isAdded == "yes")$variable
vars = as.character(vars)
result_naive = identical( sort(vars), trueSet)

data.frame( method = c(paste("mvBIC", methods, sep=' - '), 'naive'),
            recovery = c(res, result_naive),
            s = s,
            k = k,
            dim_eff = dim_eff)

}) do.call(rbind, resRecovery) }) resRecovery = do.call(rbind, resRecovery) resRecovery = data.table(resRecovery)

summarize

df = resRecovery[,data.frame(recoveryRate = sum(recovery)/length(recovery), meff = dim_eff ),by=c('s', 'method')] df$sd = with(df, sqrt(recoveryRate*(1-recoveryRate)/n_reps)) df$up = with(df, recoveryRate + sd) df$down = with(df, recoveryRate - sd)

cols = c("red", "orange", "dodgerblue", "green", "black")

pdf("~/www/mvBIC.pdf") ggplot(df, aes(s, recoveryRate, color=method, fill=method)) + geom_ribbon(aes(ymin=down, ymax=up), alpha=.3, linetype=0) + geom_line() + geom_point() + scale_color_manual("Method", values = cols ) + scale_fill_manual("Method", values = cols ) + xlab("Correlation parameter") + ylab("Power to recover true model") + theme_bw() + theme(aspect.ratio=1) + ylim(0, 1) dev.off()

naive

mvBIC_fit( t(Y), ~ X_1, X, useMVBIC=FALSE) mvBIC_fit( t(Y), ~ X_3, X, useMVBIC=FALSE)

method = "Touloumis_unequal" res1 = mvBIC_fit( t(Y), ~ X_1, X, logDetMethod=method) res1@params res2 = mvBIC_fit( t(Y), ~ 1, X, logDetMethod=method) res2@params res1-res2

residMatrix1 = t(scale(residuals(lm((Y) ~ X_1, data=as.data.frame(X))))) residMatrix2 = t(scale(residuals(lm((Y) ~ 1, data=as.data.frame(X)))))

mvBIC:::mvBIC_from_residuals( residMatrix1, 3 ) mvBIC:::mvBIC_from_residuals( residMatrix2, 3 )

rlogDet( residMatrix1, method="T" ) rlogDet( residMatrix2, method="T" )

rlogDet( residMatrix1, method="Str" ) rlogDet( residMatrix2, method="Str" )

rlogDet( residMatrix1, method="pseudo" ) rlogDet( residMatrix2, method="pseudo" )

res = shrinkcovmat.identity(residMatrix1) str(res)

bestModel = mvForwardStepwise( t(Y), ~1, X, colnames(X)[1:10])

method = "rlogDet"

a = mvBIC_fit(t(Y), ~ X_3 , X, verbose=TRUE, logDetMethod = method) b = mvBIC_fit(t(Y), ~ X_10 + X_5 + X_9, X, verbose=TRUE, logDetMethod = method) as.numeric(a - b)

a = mvBIC_fit(t(svd(Y)$u), ~ X_3 , X, verbose=TRUE, logDetMethod = method) b = mvBIC_fit(t(svd(Y)$u), ~ X_10 + X_5 + X_9, X, verbose=TRUE, logDetMethod = method) as.numeric(a - b)

a = mvBIC_fit(t(svd(Y)$u), ~ X_3 , X, verbose=TRUE, useMVBIC=FALSE, logDetMethod = method) b = mvBIC_fit(t(svd(Y)$u), ~ X_10 + X_5 + X_9, X, verbose=TRUE, useMVBIC=FALSE, logDetMethod = method) as.numeric(a - b)

library(maotai)

n = 5 p = 10 Y = matrix(rnorm(n*p), n, p)

evalues = svd(Y)$d^2 sum(log(evalues[evalues > 1e-10]))

C = crossprod(Y) evalues = eigen(C)$values sum(log(evalues[evalues > 1e-10]))

log(pdeterminant(C))

n = 1000 p = 50 A = cor(matrix(rnorm(p*n),ncol=n)) # (n x n) matrix k = as.double(Matrix::rankMatrix(A)) # rank of A

evalues = eigen(A)$values pdet = sum(log(evalues[evalues > 1e-5]))

smallest eigen-value

(1-sqrt(n/p))^2

evalues[p-1]

x = p:n

plot(x, (1-sqrt(n/x))^2)

iterative computation

ntry = 11 del.vec = exp(-(1:ntry)) det.vec = rep(0,ntry) for (i in 1:ntry){ del = del.vec[i] # det.vec[i] = det(A+deldiag(n))/(del^(n-k)) det.vec[i] = determinant(A+diag(del,n))$modulus[1] - (n-k)log(del) }

visualize the results

opar <- par(no.readonly=TRUE) plot(log(del.vec), det.vec, main=paste("true rank is ",k," out of ",n,sep=""),"b", xlab="iterations") abline(h=pdet,col="red",lwd=1.2) par(opar)

min(eigen(A+diag(del,n))$values)

finite sample size estimator for log det

n = 200

res = lapply( seq(20, 5*n, length.out=10), function(p){

logDet = sapply(1:10, function(i){ A = cor(matrix(rnorm(p*n),ncol=n))
determinant(A)$modulus[1] }) data.frame(logDet, p) }) res = do.call(rbind, res)

ggplot(res, aes(p, logDet)) + geom_point() + theme_bw()

library(corpcor) library(HiDimDA)

n = 500 p = 30 X = matrix(rnorm(p*n),ncol=n) A = cor(X) # (n x n) matrix

res = ShrnkSigE( df=p-1, n, min(n,p-1), Sigma=A, Trgt = "Idntty") res$Intst

evalues = eigen(A)$values sum(log(evalues[evalues > 1e-10]))

sum(log(res$D))

sum(log(eigen(res)$values))

plot(eigen(A)$values, eigen(res)$values)

C = cov2cor(A) ev = eigen(C)$values

get_lambda = function(ev, n, p){ a = sum(ev^2) + sum(ev)^2 b = n * sum(ev^2) + (p-n+1)/p * sum(ev)^2 a / b } lambda = get_lambda(ev, n, p)

sum(log(ev*(1-lambda) + lambda))

sum(log(ev))

estimate.lambda(X) c = cor.shrink(X) attr(c, "lambda")

library(clusterGeneration) library(mvtnorm) library(corpcor) library(HiDimDA) library(TAS) library(ShrinkCovMat) library(ggplot2) library(reshape2) library(Rfast)

estLogDet = function( X, method, scale=TRUE){

p = nrow(X) n = ncol(X)

if( scale ){ # A = cor(X) # (n x n) matrix X_std = scale(X)/sqrt(p-1) }else{ X_std = X }

rnk = min(n, p-1) # ev = eigen(A)$values ev = svd(X_std)$d[1:rnk]^2

if( method == "Strimmer"){ lambda = estimate.lambda(X, verbose=FALSE) ev_shrink = (ev(1-lambda) + lambda) ev_hat = c(ev_shrink, rep(lambda, n-length(ev_shrink))) }else if( method == "gcShrink"){ suppressWarnings({ res = gcShrink(t(X), var=1, cor=1, plot=FALSE) }) lambda = res$optimalpha ev_gc = ev(1-lambda) + lambda ev_hat = c(ev_gc, rep(lambda, n-length(ev_gc))) }else if( method == "ShrinkCovMat"){

res = shrinkcovmat.identity(t(X), centered=FALSE)
lambda_hat = res$lambdahat

ev_shrink2 = (ev*(1-lambda_hat) + lambda_hat)
ev_hat = c(ev_shrink2, rep(lambda_hat, n-length(ev_shrink2)))

}else if( method == "ShrnkSigE"){

res = ShrnkSigE( df=p-1, n, min(n,p-1), Sigma=cor(X), Trgt = "Idntty")
lambda = ifelse("Intst" %in% names(res), res$Intst, 0)

ev_gc = ev*(1-lambda) + lambda
ev_hat = c(ev_gc, rep(lambda, n-length(ev_gc)))

}else if(method == "rlogDet"){ ev_hat = rlogDet(X) }else if(method == "population"){ ev_hat = ev }else{ stop("Method not found") }

ev_hat }

useFast = FALSE

n = 1000

p_array = c(seq(50, 100, by=20), seq(120,300, by=30))

n_array = c(seq(4, 1500, by=100), seq(2000, 10000, by=500))

n_array = c(seq(4, 1000, by=100))

res = lapply( n_array, function(n){ cat("\rn = ", n, ' ') res = lapply( p_array, function(p){

if( useFast ){
  # construct data from eigen values
  # evTrue = eigen(Sigma)$values
  evTrue = sort(runif(n, 1, 1), decreasing=TRUE)
  Q <- clusterGeneration:::genOrthogonal(n) 
  # Sigma <- Q %*% diag(evTrue) %*% t(Q)
  # evTrue[1:3]
  # 
  # R = t(Q %*% (t(Q) * sqrt(pmax(evTrue, 0))))
  R = crossprod(sweep(Q, 1, evTrue,FUN="*"), Q)

  X = matrnorm(p, n) %*% R
  # crossprod(X)/p

}else{
  # Generate correlation directly
  Sigma = cov2cor(genPositiveDefMat(n, ratioLambda=100, lambdaLow=30)$Sigma)
  evTrue = eigen(Sigma)$values
  X = mvtnorm::rmvnorm(p, sig=Sigma)
}

# logDet
res = data.frame( n = n,
                  p = p,
                  True          = sum(log(evTrue)),
                  Population    = sum(log(estLogDet(X, "population"))),
                  # Strimmer      = sum(log(estLogDet(X, "Strimmer"))),
                  Strimmer       = rlogDet(X, "Strimmer"),
                  Touloumis       = rlogDet(X, "Touloumis"))
                  # gcShrink      = sum(log(estLogDet(X, "gcShrink"))),
                  # ShrinkCovMat  = sum(log(estLogDet(X, "ShrinkCovMat"))))
                  # ShrnkSigE     = sum(log(estLogDet(X, "ShrnkSigE"))))
res

}) res = do.call(rbind, res) }) res = do.call(rbind, res)

res2 = res idx = colnames(res2) %in% c('n', 'p', 'True') res2 = cbind(n=res2$n, p=res2$p, (res2[,!idx] - res$True)) df = melt(res2, id.vars=c('n', 'p'))

pdf("~/www/mvBIC.pdf") ggplot(subset(df, variable!="Population"), aes(n, value, color=variable)) + geom_point() + theme_bw() + theme(aspect.ratio=1) + ylab("Percent error") + facet_wrap(~p) dev.off()

fig1 = ggplot(res, aes(True, Strimmer)) + geom_point( ) + theme_bw() + theme(aspect.ratio=1) + ylab("Percent error") fig2 = ggplot(res, aes(True, Touloumis)) + geom_point( ) + theme_bw() + theme(aspect.ratio=1) + ylab("Percent error")

plot_grid(fig1, fig2)

plot(evTrue, ylim= range(c(evTrue, ev, ev_shrink, ev_gc)))

points(ev,col="red")

points(ev_shrink,col="blue")

points(ev_gc,col="green")

logDet

sum(log(evTrue)) sum(log(ev[1:(p-1)])) sum(log(ev_shrink)) sum(log(ev_gc)) rlogDet( X )

sum(log(ev_shrink2))

target = diag(1,n)

obj = optimize( function(alpha) logML(t(X), target, alpha), interval=c(1e-6, 1-1e-6), tol=1e-6, maximum=TRUE)

phase2_formula <- "~Dx.Tissue + (1 | Individual_ID) + RIN2 + (1 | Institution) + ageOfDeath + RIN + PMI + EV.1 + (1 | Reported_Gender) + EV.2 + EV.3 + EV.4" phase3 <- mvBIC::mvForwardStepwise(exprObj = subset_CQN[1:10,], baseFormula = phase2_formula, data = COVARIATES, variables = array(c("scale(IntragenicRate)", "scale(IntronicRate)","IntergenicRate)","scale(rRNARate)", "scale(TotalReads)", "scale(GenesDetected)", "scale(MappedReads)")))

y = subset_CQN[1,] phase2_formula <- "y~Dx.Tissue + (1 | Individual_ID) + RIN2 + (1 | Institution) + ageOfDeath + RIN + PMI + EV.1 + (1 | Reported_Gender) + EV.2 + EV.3 + EV.4 + scale(TotalReads)"

fit = lme4::lmer(phase2_formula, COVARIATES)

```



GabrielHoffman/mvIC documentation built on Aug. 30, 2022, 7:58 p.m.