knitr::opts_chunk$set(message = FALSE, warning = FALSE, comment = NA, fig.width = 6.25, fig.height = 5) library(ANCOMBC) library(tidyverse)
Analysis of Composition of Microbiomes (ANCOM) [@mandal2015analysis] is a differential abundance (DA) analysis for microbial absolute abundances. It accounts for the compositionality of microbiome data by performing the additive log ratio (ALR) transformation. ANCOM employs a heuristic strategy to declare taxa that are significantly differentially abundant. For a given taxon, the output W statistic represents the number ALR transformed models where the taxon is differentially abundant with regard to the variable of interest. The larger the value of W, the more likely the taxon is differentially abundant. For more details, please refer to the ANCOM paper.
Download package.
if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install("ANCOMBC")
Load the package.
library(ANCOMBC)
The HITChip Atlas dataset contains genus-level microbiota profiling with HITChip for 1006 western adults with no reported health complications, reported in [@lahti2014tipping]. The dataset is available via the microbiome R package [@lahti2017tools] in phyloseq [@mcmurdie2013phyloseq] format. In this tutorial, we consider the following covariates:
Continuous covariates: "age"
Categorical covariates: "region", "bmi"
The group variable of interest: "bmi"
Three groups: "lean", "overweight", "obese"
The reference group: "obese"
data(atlas1006, package = "microbiome") # Subset to baseline pseq = phyloseq::subset_samples(atlas1006, time == 0) # Re-code the bmi group meta_data = microbiome::meta(pseq) meta_data$bmi = recode(meta_data$bmi_group, obese = "obese", severeobese = "obese", morbidobese = "obese") # Note that by default, levels of a categorical variable in R are sorted # alphabetically. In this case, the reference level for `bmi` will be # `lean`. To manually change the reference level, for instance, setting `obese` # as the reference level, use: meta_data$bmi = factor(meta_data$bmi, levels = c("obese", "overweight", "lean")) # You can verify the change by checking: # levels(meta_data$bmi) # Create the region variable meta_data$region = recode(as.character(meta_data$nationality), Scandinavia = "NE", UKIE = "NE", SouthEurope = "SE", CentralEurope = "CE", EasternEurope = "EE", .missing = "unknown") phyloseq::sample_data(pseq) = meta_data # Subset to lean, overweight, and obese subjects pseq = phyloseq::subset_samples(pseq, bmi %in% c("lean", "overweight", "obese")) # Discard "EE" as it contains only 1 subject # Discard subjects with missing values of region pseq = phyloseq::subset_samples(pseq, ! region %in% c("EE", "unknown")) print(pseq)
ancom
function using phyloseq
dataset.seed(123) out = ancom(data = pseq, tax_level = "Family", meta_data = NULL, p_adj_method = "holm", prv_cut = 0.10, lib_cut = 1000, main_var = "bmi", adj_formula = "age + region", rand_formula = NULL, lme_control = NULL, struc_zero = TRUE, neg_lb = TRUE, alpha = 0.05, n_cl = 2, verbose = TRUE) res = out$res # Similarly, if the main variable of interest is continuous, such as age, the # ancom model can be specified as # out = ancom(data = pseq, tax_level = "Family", meta_data = NULL, # p_adj_method = "holm", prv_cut = 0.10, # lib_cut = 1000, main_var = "age", adj_formula = "bmi + region", # rand_formula = NULL, lme_control = NULL, struc_zero = FALSE, # neg_lb = FALSE, alpha = 0.05, n_cl = 2, verbose = TRUE)
q_val = out$q_data beta_val = out$beta_data # Only consider the effect sizes with the corresponding q-value less than alpha beta_val = beta_val * (q_val < 0.05) # Choose the maximum of beta's as the effect size beta_pos = apply(abs(beta_val), 2, which.max) beta_max = vapply(seq_along(beta_pos), function(i) beta_val[beta_pos[i], i], FUN.VALUE = double(1)) # Number of taxa except structural zeros n_taxa = ifelse(is.null(out$zero_ind), nrow(tse), sum(apply(out$zero_ind[, -1], 1, sum) == 0)) # Cutoff values for declaring differentially abundant taxa cut_off = 0.7 * (n_taxa - 1) df_fig_w = res %>% dplyr::mutate(beta = beta_max, direct = case_when( detected_0.7 == TRUE & beta > 0 ~ "Positive", detected_0.7 == TRUE & beta <= 0 ~ "Negative", TRUE ~ "Not Significant" )) %>% dplyr::arrange(W) df_fig_w$taxon = factor(df_fig_w$taxon, levels = df_fig_w$taxon) df_fig_w$W = replace(df_fig_w$W, is.infinite(df_fig_w$W), n_taxa - 1) df_fig_w$direct = factor(df_fig_w$direct, levels = c("Negative", "Positive", "Not Significant")) p_w = df_fig_w %>% ggplot(aes(x = taxon, y = W, color = direct)) + geom_point(size = 2, alpha = 0.6) + labs(x = "Taxon", y = "W") + scale_color_discrete(name = NULL) + geom_hline(yintercept = cut_off, linetype = "dotted", color = "blue", size = 1.5) + geom_text(aes(x = 2, y = cut_off + 0.5, label = "W[0.7]"), size = 5, vjust = -0.5, hjust = 0, color = "orange", parse = TRUE) + theme_bw() + theme(axis.text.x = element_blank(), axis.ticks.x = element_blank(), panel.grid.major = element_blank()) p_w
ancom
function using tse
datatse = mia::makeTreeSummarizedExperimentFromPhyloseq(pseq) set.seed(123) out = ancom(data = tse, assay_name = "counts", tax_level = "Family", meta_data = NULL, p_adj_method = "holm", prv_cut = 0.10, lib_cut = 1000, main_var = "bmi", adj_formula = "age + region", rand_formula = NULL, lme_control = NULL, struc_zero = TRUE, neg_lb = TRUE, alpha = 0.05, n_cl = 2, verbose = TRUE) res = out$res
ancom
function by directly providing the abundance and metadataabundance_data = microbiome::abundances(pseq) aggregate_data = microbiome::abundances(microbiome::aggregate_taxa(pseq, "Family")) meta_data = microbiome::meta(pseq) set.seed(123) out = ancom(data = abundance_data, aggregate_data = aggregate_data, meta_data = meta_data, p_adj_method = "holm", prv_cut = 0.10, lib_cut = 1000, main_var = "bmi", adj_formula = "age + region", rand_formula = NULL, lme_control = NULL, struc_zero = TRUE, neg_lb = TRUE, alpha = 0.05, n_cl = 2, verbose = TRUE) res = out$res
A two-week diet swap study between western (USA) and traditional (rural Africa) diets [@lahti2014tipping]. The dataset is available via the microbiome R package [@lahti2017tools] in phyloseq [@mcmurdie2013phyloseq] format. In this tutorial, we consider the following fixed effects:
Continuous covariates: "timepoint"
Categorical covariates: "nationality"
The group variable of interest: "group"
Three groups: "DI", "ED", "HE"
The reference group: "DI"
and the following random effects:
A random intercept
A random slope: "timepoint"
data(dietswap, package = "microbiome") print(dietswap)
ancom
function using phyloseq
dataset.seed(123) out = ancom(data = dietswap, tax_level = "Family", p_adj_method = "holm", prv_cut = 0.10, lib_cut = 1000, main_var = "group", adj_formula = "nationality + timepoint", rand_formula = "(timepoint | subject)", lme_control = lme4::lmerControl(), struc_zero = TRUE, neg_lb = TRUE, alpha = 0.05, n_cl = 2) res = out$res
q_val = out$q_data beta_val = out$beta_data # Only consider the effect sizes with the corresponding q-value less than alpha beta_val = beta_val * (q_val < 0.05) # Choose the maximum of beta's as the effect size beta_pos = apply(abs(beta_val), 2, which.max) beta_max = vapply(seq_along(beta_pos), function(i) beta_val[beta_pos[i], i], FUN.VALUE = double(1)) # Number of taxa except structural zeros n_taxa = ifelse(is.null(out$zero_ind), nrow(tse), sum(apply(out$zero_ind[, -1], 1, sum) == 0)) # Cutoff values for declaring differentially abundant taxa cut_off = 0.7 * (n_taxa - 1) df_fig_w = res %>% dplyr::mutate(beta = beta_max, direct = case_when( detected_0.7 == TRUE & beta > 0 ~ "Positive", detected_0.7 == TRUE & beta <= 0 ~ "Negative", TRUE ~ "Not Significant" )) %>% dplyr::arrange(W) df_fig_w$taxon = factor(df_fig_w$taxon, levels = df_fig_w$taxon) df_fig_w$W = replace(df_fig_w$W, is.infinite(df_fig_w$W), n_taxa - 1) df_fig_w$direct = factor(df_fig_w$direct, levels = c("Negative", "Positive", "Not Significant")) p_w = df_fig_w %>% ggplot(aes(x = taxon, y = W, color = direct)) + geom_point(size = 2, alpha = 0.6) + labs(x = "Taxon", y = "W") + scale_color_discrete(name = NULL) + geom_hline(yintercept = cut_off, linetype = "dotted", color = "blue", size = 1.5) + geom_text(aes(x = 2, y = cut_off + 0.5, label = "W[0.7]"), size = 5, vjust = -0.5, hjust = 0, color = "orange", parse = TRUE) + theme_bw() + theme(axis.text.x = element_blank(), axis.ticks.x = element_blank(), panel.grid.major = element_blank()) p_w
ancom
function using tse
datatse = mia::makeTreeSummarizedExperimentFromPhyloseq(dietswap) set.seed(123) out = ancom(data = tse, assay_name = "counts", tax_level = "Family", p_adj_method = "holm", prv_cut = 0.10, lib_cut = 1000, main_var = "group", adj_formula = "nationality + timepoint", rand_formula = "(timepoint | subject)", lme_control = lme4::lmerControl(), struc_zero = TRUE, neg_lb = TRUE, alpha = 0.05, n_cl = 2) res = out$res
ancom
function by directly providing the abundance and metadataabundance_data = microbiome::abundances(dietswap) aggregate_data = microbiome::abundances(microbiome::aggregate_taxa(dietswap, "Family")) meta_data = microbiome::meta(dietswap) set.seed(123) out = ancom(data = abundance_data, aggregate_data = aggregate_data, meta_data = meta_data, p_adj_method = "holm", prv_cut = 0.10, lib_cut = 1000, main_var = "group", adj_formula = "nationality + timepoint", rand_formula = "(timepoint | subject)", lme_control = lme4::lmerControl(), struc_zero = TRUE, neg_lb = TRUE, alpha = 0.05, n_cl = 2) res = out$res
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.