##set seed
set.seed(1)
##number of predictors / sample size
p <- 100
n <- 80
##predictor matrices
x1 <- matrix(rnorm(n*p),n,p)
x2 <- matrix(rnorm(n*p),n,p)
##active-sets and regression coefficients
act1 <- sample(1:p,5)
act2 <- c(act1[1:3],sample(setdiff(1:p,act1),2))
beta1 <- beta2 <- rep(0,p)
beta1[act1] <- 0.5
beta2[act2] <- 0.5
##response vectors
y1 <- x1%*%as.matrix(beta1)+rnorm(n,sd=1)
y2 <- x2%*%as.matrix(beta2)+rnorm(n,sd=1)
##run diffregr
split1 <- sample(1:n,50)#samples for screening (condition 1)
split2 <- sample(1:n,50)#samples for screening (condition 2)
fit <- diffregr_singlesplit(y1,y2,x1,x2,split1,split2)
fit$pval.onesided#p-value
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.