BiocStyle::markdown(css.files = c('custom.css'))
tRNAscan-SE [@Lowe.1997] can be used for prediction of tRNA genes in whole
genomes based on sequence context and calculated structural features. Many tRNA
annotations in genomes contain or are based on information generated by
tRNAscan-SE, for example the current SGD reference genome sacCer3 for
Saccharomyces cerevisiae. However, not all available information from
tRNAscan-SE end up in the genome annotation. Among these are for example
structural information, additional scores and the information, whether the
conserved CCA-end is encoded in the genomic DNA. To work with this complete set
of information, the tRNAscan-SE output can be parsed into a more accessible
GRanges object using tRNAscanImport
.
The default tRNAscan-SE output, either from running tRNAscan-SE [@Lowe.1997] locally or retrieving the output from the gtRNADb [@Chan.2016], consist of a formatted text document containing individual text blocks per tRNA delimited by an empty line.
suppressPackageStartupMessages({ library(tRNAscanImport) })
library(tRNAscanImport) yeast_file <- system.file("extdata", file = "yeast.tRNAscan", package = "tRNAscanImport") # output for sacCer3 # Before readLines(con = yeast_file, n = 7L)
GRanges
To access the information in a BioC context the import as a GRanges object
comes to mind. import.tRNAscanAsGRanges()
performs this task by evaluating
each text block using regular expressions.
# output for sacCer3 # After gr <- import.tRNAscanAsGRanges(yeast_file) head(gr, 2) # Any GRanges passing this, can be used for subsequent function istRNAscanGRanges(gr)
The result can be used directly in R or saved as gff3/fasta file for further use, including processing the sequences for HTS read mapping or statistical analysis on tRNA content of the analyzed genome.
suppressPackageStartupMessages({ library(Biostrings) library(rtracklayer) })
library(Biostrings) library(rtracklayer) # suppressMessages(library(rtracklayer, quietly = TRUE)) # Save tRNA sequences writeXStringSet(gr$tRNA_seq, filepath = tempfile()) # to be GFF3 compliant use tRNAscan2GFF gff <- tRNAscan2GFF(gr) export.gff3(gff, con = tempfile())
The tRNAscan-SE information can be visualized using the gettRNAFeaturePlots()
function of the tRNA
package, returning a named list of ggplot2 plots, which
can be plotted or further modified.
Alternatively, gettRNASummary()
returns the aggregated information for
further use.
# tRNAscan-SE output for hg38 human_file <- system.file("extdata", file = "human.tRNAscan", package = "tRNAscanImport") # tRNAscan-SE output for E. coli MG1655 eco_file <- system.file("extdata", file = "ecoli.tRNAscan", package = "tRNAscanImport") # import tRNAscan-SE files gr_human <- import.tRNAscanAsGRanges(human_file) gr_eco <- import.tRNAscanAsGRanges(eco_file) # get summary plots grl <- GRangesList(Sce = gr, Hsa = gr_human, Eco = gr_eco) plots <- gettRNAFeaturePlots(grl)
plots$length
plots$tRNAscan_score
plots$gc
plots$tRNAscan_intron
plots$variableLoop_length
Since tRNAscan reports the genomic location for tRNAs found, approximate tRNA
precursor sequences can be retrieved by combining a tRNAscan input object with
matching genomic sequences for the function get.tRNAprecursor
.
suppressPackageStartupMessages({ library(BSgenome.Scerevisiae.UCSC.sacCer3) })
library(BSgenome.Scerevisiae.UCSC.sacCer3) genome <- getSeq(BSgenome.Scerevisiae.UCSC.sacCer3) # renaming chromosome to match tRNAscan output names(genome) <- c(names(genome)[-17L],"chrmt") tRNAprecursor <- get.tRNAprecursor(gr, genome) head(tRNAprecursor)
The length of the overhangs can be defined with the arguments add.5prime
and
add.3prime
, respectively. Both support individual lengths for each tRNA and
require values to be integer only. In addition, introns can be removed by
setting trim.introns = TRUE
.
Further examples of working with tRNA information can be found in the
vignette of the tRNA
package.
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.