knitr::opts_chunk$set(dpi = 70, echo = TRUE, warning = FALSE, message = FALSE, 
                    eval = TRUE, fig.show = TRUE, fig.width = 6, 
                    fig.height = 4, fig.align ='center', 
                    out.width = '60%', cache = FALSE)

Brief Introduction

PLSDA-batch is a new batch effect correction method based on Projection to Latent Structures Discriminant Analysis to correct data prior to any downstream analysis. It estimates latent components related to treatment and batch effects to remove batch variation. PLSDA-batch is highly suitable for microbiome data as it is non-parametric, multivariate and allows for ordination and data visualisation. Combined with centered log ratio transformation for addressing uneven library sizes and compositional structure, PLSDA-batch addresses all characteristics of microbiome data that existing correction methods have ignored so far.

Apart from the main method, the R package also includes two variants called 1/ weighted PLSDA-batch for unbalanced batch x treatment designs that are commonly encountered in studies with small sample size, and 2/ sparse PLSDA-batch for selection of discriminative variables to avoid overfitting in classification problems. These two variants have widened the scope of applicability of PLSDA-batch to different data settings [@wang2020multivariate].

This vignette includes microbiome data pre-processing, batch effect detection and visualisation, the usage of PLSDA-batch series methods, assessment of batch effect removal and variable selection after batch effect correction. See "Batch Effects Management in Case Studies" for different choices of methods for batch effect management according to experimental purposes and designs.

Packages installation and loading

First, we load the packages necessary for analysis, and check the version of each package.

# CRAN
library(pheatmap)
library(vegan)
library(gridExtra)

# Bioconductor
library(mixOmics)
library(Biobase)
library(TreeSummarizedExperiment)
library(PLSDAbatch)

# print package versions
package.version('pheatmap')
package.version('vegan')
package.version('gridExtra')
package.version('mixOmics')
package.version('Biobase')
package.version('PLSDAbatch')

Case study description

We considered a case study to illustrate the application of PLSDA-batch. This study is described as follows:

$\color{blue}{\bf{\text{Anaerobic digestion.}}}$ This study explored the microbial indicators that could improve the efficacy of anaerobic digestion (AD) bioprocess and prevent its failure [@chapleur2016increasing]. This data include 75 samples and 567 microbial variables. The samples were treated with two different ranges of phenol concentration (effect of interest) and processed at five different dates (batch effect). This study includes a clear and strong batch effect with an approx. balanced batch x treatment design.

Data pre-processing

Pre-filtering

We load the $\color{blue}{\text{AD data}}$ stored internally with function data(), and then extract the batch and treatment information out.

# AD data
data('AD_data') 
ad.count <- assays(AD_data$FullData)$Count
dim(ad.count)

ad.metadata <- rowData(AD_data$FullData)
ad.batch = factor(ad.metadata$sequencing_run_date, 
                levels = unique(ad.metadata$sequencing_run_date))
ad.trt = as.factor(ad.metadata$initial_phenol_concentration.regroup)
names(ad.batch) <- names(ad.trt) <- rownames(ad.metadata)

The raw $\color{blue}{\text{AD data}}$ include 567 OTUs and 75 samples. We then use the function PreFL() from our $\color{orange}{\text{PLSDAbatch}}$ R package to filter the data.

ad.filter.res <- PreFL(data = ad.count)
ad.filter <- ad.filter.res$data.filter
dim(ad.filter)

# zero proportion before filtering
ad.filter.res$zero.prob
# zero proportion after filtering
sum(ad.filter == 0)/(nrow(ad.filter) * ncol(ad.filter))

After filtering, 231 OTUs remained, and the proportion of zeroes decreased from 63% to 38%.

Note: The PreFL() function is only dedicated to raw counts, rather than relative abundance data. We also recommend to start the pre-filtering on raw counts, rather than relative abundance data to mitigate the compositionality issue.

Transformation

Prior to CLR transformation, we recommend adding 1 as the offset for the data (e.g., $\color{blue}{\text{AD data}}$) that are raw count data, and 0.01 as the offset for the data that are relative abundance data. We use logratio.transfo() function in $\color{orange}{\text{mixOmics}}$ package to CLR transform the data.

ad.clr <- logratio.transfo(X = ad.filter, logratio = 'CLR', offset = 1) 
class(ad.clr) = 'matrix'

Batch effect detection

PCA

We apply pca() function from $\color{orange}{\text{mixOmics}}$ package to the $\color{blue}{\text{AD data}}$ and Scatter_Density() function from $\color{orange}{\text{PLSDAbatch}}$ to represent the PCA sample plot with densities.

# AD data
ad.pca.before <- pca(ad.clr, ncomp = 3, scale = TRUE)

Scatter_Density(object = ad.pca.before, batch = ad.batch, trt = ad.trt, 
                title = 'AD data', trt.legend.title = 'Phenol conc.')

In the above figure, we observed 1) the distinction between samples treated with different phenol concentrations and 2) the differences between samples sequenced at "14/04/2016", "21/09/2017" and the other dates. Therefore, the batch effect related to dates needs to be removed.

Boxplots and density plots

We first identify the top OTU driving the major variance in PCA using selectVar() in $\color{orange}{\text{mixOmics}}$ package. Each identified OTU can then be plotted as boxplots and density plots using box_plot() and density_plot() in $\color{orange}{\text{PLSDAbatch}}$.

ad.OTU.name <- selectVar(ad.pca.before, comp = 1)$name[1]
ad.OTU_batch <- data.frame(value = ad.clr[,ad.OTU.name], batch = ad.batch)
box_plot(df = ad.OTU_batch, title = paste(ad.OTU.name, '(AD data)'), 
        x.angle = 30)
density_plot(df = ad.OTU_batch, title = paste(ad.OTU.name, '(AD data)'))

The boxplot and density plot indicated a strong date batch effect because of the differences between "14/04/2016", "21/09/2017" and the other dates in the "OTU28".

We also apply a linear regression model to the "OTU28" using linear_regres() from $\color{orange}{\text{PLSDAbatch}}$ with batch and treatment effects as covariates. We set "14/04/2016" and "21/09/2017" as the reference batch respectively with relevel() from $\color{orange}{\text{stats}}$.

# reference batch: 14/04/2016
ad.batch <- relevel(x = ad.batch, ref = '14/04/2016')

ad.OTU.lm <- linear_regres(data = ad.clr[,ad.OTU.name], 
                            trt = ad.trt, batch.fix = ad.batch, 
                            type = 'linear model')
summary(ad.OTU.lm$model$data)

# reference batch: 21/09/2017
ad.batch <- relevel(x = ad.batch, ref = '21/09/2017')

ad.OTU.lm <- linear_regres(data = ad.clr[,ad.OTU.name], 
                            trt = ad.trt, batch.fix = ad.batch, 
                            type = 'linear model')
summary(ad.OTU.lm$model$data)

From the results of linear regression, we observed P < 0.001 for the regression coefficients associated with all the other batches when the reference batch was "14/04/2016", which confirmed the difference between the samples from batch "14/04/2016" and the other samples as observed from previous plots. When the reference batch was "21/09/2017", we also observed significant differences between batch "21/09/2017" and "14/04/2016", between "21/09/2017" and "01/07/2016". Therefore, the batch effect because of "21/09/2017" also exists.

Heatmap

We produce a heatmap using $\color{orange}{\text{pheatmap}}$ package. The data first need to be scaled on both OTUs and samples.

# scale the clr data on both OTUs and samples
ad.clr.s <- scale(ad.clr, center = TRUE, scale = TRUE)
ad.clr.ss <- scale(t(ad.clr.s), center = TRUE, scale = TRUE)

ad.anno_col <- data.frame(Batch = ad.batch, Treatment = ad.trt)
ad.anno_colors <- list(Batch = color.mixo(seq_len(5)), 
                        Treatment = pb_color(seq_len(2)))
names(ad.anno_colors$Batch) = levels(ad.batch)
names(ad.anno_colors$Treatment) = levels(ad.trt)

pheatmap(ad.clr.ss, 
        cluster_rows = FALSE, 
        fontsize_row = 4, 
        fontsize_col = 6,
        fontsize = 8,
        clustering_distance_rows = 'euclidean',
        clustering_method = 'ward.D',
        treeheight_row = 30,
        annotation_col = ad.anno_col,
        annotation_colors = ad.anno_colors,
        border_color = 'NA',
        main = 'AD data - Scaled')

In the heatmap, samples in the $\color{blue}{\text{AD data}}$ from batch dated "14/04/2016" were clustered and distinct from other samples, indicating a batch effect.

pRDA

We apply pRDA with varpart() function from $\color{orange}{\text{vegan}}$ R package.

# AD data
ad.factors.df <- data.frame(trt = ad.trt, batch = ad.batch)
class(ad.clr) <- 'matrix'
ad.rda.before <- varpart(ad.clr, ~ trt, ~ batch, 
                        data = ad.factors.df, scale = TRUE)
ad.rda.before$part$indfract

In the result, X1 and X2 represent the first and second covariates fitted in the model. [a], [b] represent the independent proportion of variance explained by X1 and X2 respectively, and [c] represents the intersection variance shared between X1 and X2. In the $\color{blue}{\text{AD data}}$, batch variance (X2) was larger than treatment variance (X1) with some interaction proportion (indicated in line [c], Adj.R.squared = 0.013). The greater the intersection variance, the more unbalanced batch x treatment design is. In this study, we considered the design as approx. balanced.

Batch effect correction

PLSDA-batch

The PLSDA_batch() function is implemented in $\color{orange}{\text{PLSDAbatch}}$ package. To use this function, we need to specify the optimal number of components related to treatment (ncomp.trt) or batch effects (ncomp.bat).

Here in the $\color{blue}{\text{AD data}}$, we use plsda() from $\color{orange}{\text{mixOmics}}$ with only treatment grouping information to estimate the optimal number of treatment components to preserve.

# estimate the number of treatment components
ad.trt.tune <- plsda(X = ad.clr, Y = ad.trt, ncomp = 5)
ad.trt.tune$prop_expl_var #1

We choose the number that explains 100% variance in the outcome matrix Y, thus from the result, 1 component was enough to preserve the treatment information.

We then use PLSDA_batch() function with both treatment and batch grouping information to estimate the optimal number of batch components to remove.

# estimate the number of batch components
ad.batch.tune <- PLSDA_batch(X = ad.clr, 
                            Y.trt = ad.trt, Y.bat = ad.batch,
                            ncomp.trt = 1, ncomp.bat = 10)
ad.batch.tune$explained_variance.bat #4
sum(ad.batch.tune$explained_variance.bat$Y[seq_len(4)])

Using the same criterion as choosing treatment components, we choose the number of batch components that explains 100% variance in the outcome matrix of batch. According to the result, 4 components were required to remove batch effects.

We then can correct for batch effects applying PLSDA_batch() with treatment, batch grouping information and corresponding optimal number of related components.

ad.PLSDA_batch.res <- PLSDA_batch(X = ad.clr, 
                                Y.trt = ad.trt, Y.bat = ad.batch,
                                ncomp.trt = 1, ncomp.bat = 4)
ad.PLSDA_batch <- ad.PLSDA_batch.res$X.nobatch

sPLSDA-batch

We apply sPLSDA-batch using the same function PLSDA_batch(), but we specify the number of variables to select on each component (usually only treatment-related components keepX.trt). To determine the optimal number of variables to select, we use tune.splsda() function from $\color{orange}{\text{mixOmics}}$ package [@rohart2017mixomics] with all possible numbers of variables to select for each component (test.keepX).

# estimate the number of variables to select per treatment component
set.seed(777)
ad.test.keepX = c(seq(1, 10, 1), seq(20, 100, 10), 
                seq(150, 231, 50), 231)
ad.trt.tune.v <- tune.splsda(X = ad.clr, Y = ad.trt, 
                            ncomp = 1, test.keepX = ad.test.keepX, 
                            validation = 'Mfold', folds = 4, 
                            nrepeat = 50)
ad.trt.tune.v$choice.keepX #100

Here the optimal number of variables to select for the treatment component was 100. Since we have adjusted the amount of treatment variation to preserve, we need to re-choose the optimal number of components related to batch effects using the same criterion mentioned in section PLSDA-batch.

# estimate the number of batch components
ad.batch.tune <- PLSDA_batch(X = ad.clr, 
                            Y.trt = ad.trt, Y.bat = ad.batch,
                            ncomp.trt = 1, keepX.trt = 100,
                            ncomp.bat = 10)
ad.batch.tune$explained_variance.bat #4
sum(ad.batch.tune$explained_variance.bat$Y[seq_len(4)])

According to the result, we needed 4 batch related components to remove batch variance from the data with function PLSDA_batch().

ad.sPLSDA_batch.res <- PLSDA_batch(X = ad.clr, 
                                Y.trt = ad.trt, Y.bat = ad.batch,
                                ncomp.trt = 1, keepX.trt = 100,
                                ncomp.bat = 4)
ad.sPLSDA_batch <- ad.sPLSDA_batch.res$X.nobatch

Note: for unbalanced batch x treatment design (with the exception of the nested design), we can specify balance = FALSE in PLSDA_batch() function to apply weighted PLSDA-batch.

Assessing batch effect correction

We apply different visualisation and quantitative methods to assessing batch effect correction.

Methods that detect batch effects

PCA

In the $\color{blue}{\text{AD data}}$, we compared the PCA sample plots before and after batch effect correction.

ad.pca.before <- pca(ad.clr, ncomp = 3, scale = TRUE)
ad.pca.PLSDA_batch <- pca(ad.PLSDA_batch, ncomp = 3, scale = TRUE)
ad.pca.sPLSDA_batch <- pca(ad.sPLSDA_batch, ncomp = 3, scale = TRUE)
# order batches
ad.batch = factor(ad.metadata$sequencing_run_date, 
                levels = unique(ad.metadata$sequencing_run_date))

ad.pca.before.plot <- Scatter_Density(object = ad.pca.before, 
                                    batch = ad.batch, 
                                    trt = ad.trt, 
                                    title = 'Before correction')
ad.pca.PLSDA_batch.plot <- Scatter_Density(object = ad.pca.PLSDA_batch, 
                                        batch = ad.batch, 
                                        trt = ad.trt, 
                                        title = 'PLSDA-batch')
ad.pca.sPLSDA_batch.plot <- Scatter_Density(object = ad.pca.sPLSDA_batch, 
                                            batch = ad.batch, 
                                            trt = ad.trt, 
                                            title = 'sPLSDA-batch')
grid.arrange(ad.pca.before.plot, 
            ad.pca.PLSDA_batch.plot, 
            ad.pca.sPLSDA_batch.plot, ncol = 1)

As shown in the PCA sample plots, the differences between the samples sequenced at "14/04/2016", "21/09/2017" and the other dates were removed after batch effect correction. The data corrected with PLSDA-batch included slightly more treatment variation mostly on the first PC than sPLSDA-batch, as indicated on the x-axis label (26%). We can also compare the boxplots and density plots for key variables identified in PCA driving the major variance or heatmaps showing obvious patterns before and after batch effect correction (results not shown).

pRDA

We calculate the global explained variance across all microbial variables using pRDA. To achieve this, we create a loop for each variable from the original (uncorrected) and batch effect-corrected data. The final results are then displayed with partVar_plot() from $\color{orange}{\text{PLSDAbatch}}$ package.

# AD data
ad.corrected.list <- list(`Before correction` = ad.clr, 
                        `PLSDA-batch` = ad.PLSDA_batch, 
                        `sPLSDA-batch` = ad.sPLSDA_batch)

ad.prop.df <- data.frame(Treatment = NA, Batch = NA, 
                        Intersection = NA, 
                        Residuals = NA) 
for(i in seq_len(length(ad.corrected.list))){
    rda.res = varpart(ad.corrected.list[[i]], ~ trt, ~ batch,
                    data = ad.factors.df, scale = TRUE)
    ad.prop.df[i, ] <- rda.res$part$indfract$Adj.R.squared}

rownames(ad.prop.df) = names(ad.corrected.list)

ad.prop.df <- ad.prop.df[, c(1,3,2,4)]

ad.prop.df[ad.prop.df < 0] = 0
ad.prop.df <- as.data.frame(t(apply(ad.prop.df, 1, 
                                    function(x){x/sum(x)})))

partVar_plot(prop.df = ad.prop.df)

As shown in the above figure, the intersection between batch and treatment variance was small (1.3%) for the $\color{blue}{\text{AD data}}$, which implies that the batch x treatment design is not highly unbalanced. Thus the unweighted PLSDA-batch and sPLSDA-batch were still applicable, and thus the weighted versions were not used. sPLSDA-batch corrected data led to a better performance with undetectable batch and intersection variance compared to PLSDA-batch.

Other methods

$\mathbf{R^2}$

The $R^2$ values for each variable are calculated with lm() from $\color{orange}{\text{stats}}$ package. To compare the $R^2$ values among variables, we scale the corrected data before $R^2$ calculation. The results are displayed with ggplot() from $\color{orange}{\text{ggplot2}}$ R package.

# AD data
# scale
ad.corr_scale.list <- lapply(ad.corrected.list, 
                            function(x){apply(x, 2, scale)})

ad.r_values.list <- list()
for(i in seq_len(length(ad.corr_scale.list))){
    ad.r_values <- data.frame(trt = NA, batch = NA)
    for(c in seq_len(ncol(ad.corr_scale.list[[i]]))){
        ad.fit.res.trt <- lm(ad.corr_scale.list[[i]][,c] ~ ad.trt)
        ad.r_values[c,1] <- summary(ad.fit.res.trt)$r.squared
        ad.fit.res.batch <- lm(ad.corr_scale.list[[i]][,c] ~ ad.batch)
        ad.r_values[c,2] <- summary(ad.fit.res.batch)$r.squared
    }
    ad.r_values.list[[i]] <- ad.r_values
}
names(ad.r_values.list) <- names(ad.corr_scale.list)

ad.boxp.list <- list()
for(i in seq_len(length(ad.r_values.list))){
    ad.boxp.list[[i]] <- 
        data.frame(r2 = c(ad.r_values.list[[i]][ ,'trt'],
                        ad.r_values.list[[i]][ ,'batch']), 
                    Effects = as.factor(rep(c('Treatment','Batch'), 
                                        each = 231)))
}
names(ad.boxp.list) <- names(ad.r_values.list)

ad.r2.boxp <- rbind(ad.boxp.list$`Before correction`,
                    ad.boxp.list$removeBatchEffect,
                    ad.boxp.list$ComBat,
                    ad.boxp.list$`PLSDA-batch`,
                    ad.boxp.list$`sPLSDA-batch`,
                    ad.boxp.list$`Percentile Normalisation`,
                    ad.boxp.list$RUVIII)

ad.r2.boxp$methods <- rep(c('Before correction', 'PLSDA-batch', 'sPLSDA-batch'),
                        each = 462)

ad.r2.boxp$methods <- factor(ad.r2.boxp$methods, 
                            levels = unique(ad.r2.boxp$methods))

ggplot(ad.r2.boxp, aes(x = Effects, y = r2, fill = Effects)) +
    geom_boxplot(alpha = 0.80) +
    theme_bw() + 
    theme(text = element_text(size = 18),
            axis.title.x = element_blank(),
            axis.title.y = element_blank(),
            axis.text.x = element_text(angle = 60, hjust = 1, size = 18),
            axis.text.y = element_text(size = 18),
            panel.grid.minor.x = element_blank(),
            panel.grid.major.x = element_blank(),
            legend.position = "right") + facet_grid( ~ methods) + 
    scale_fill_manual(values=pb_color(c(12,14))) 

The batch effects related variance was reduced after both PLSDA-batch and sPLSDA-batch correction, but the former maintained a bit more treatment related variance.

##################################
ad.barp.list <- list()
for(i in seq_len(length(ad.r_values.list))){
    ad.barp.list[[i]] <- data.frame(r2 = c(sum(ad.r_values.list[[i]][ ,'trt']),
                                        sum(ad.r_values.list[[i]][ ,'batch'])), 
                                    Effects = c('Treatment','Batch'))
}
names(ad.barp.list) <- names(ad.r_values.list)

ad.r2.barp <- rbind(ad.barp.list$`Before correction`,
                    ad.barp.list$removeBatchEffect,
                    ad.barp.list$ComBat,
                    ad.barp.list$`PLSDA-batch`,
                    ad.barp.list$`sPLSDA-batch`,
                    ad.barp.list$`Percentile Normalisation`,
                    ad.barp.list$RUVIII)


ad.r2.barp$methods <- rep(c('Before correction', 'PLSDA-batch', 'sPLSDA-batch'),
                        each = 2)

ad.r2.barp$methods <- factor(ad.r2.barp$methods, 
                            levels = unique(ad.r2.barp$methods))


ggplot(ad.r2.barp, aes(x = Effects, y = r2, fill = Effects)) +
    geom_bar(stat="identity") + 
    theme_bw() + 
    theme(text = element_text(size = 18),
            axis.title.x = element_blank(),
            axis.title.y = element_blank(),
            axis.text.x = element_text(angle = 60, hjust = 1, size = 18),
            axis.text.y = element_text(size = 18),
            panel.grid.minor.x = element_blank(),
            panel.grid.major.x = element_blank(),
            legend.position = "right") + facet_grid( ~ methods) + 
    scale_fill_manual(values=pb_color(c(12,14)))

The overall sum of $R^2$ values indicated that sPLSDA-batch removed slightly more batch variance (PLSDA-batch: 12.40, sPLSDA-batch: 9.25) but preserved less treatment variance (PLSDA-batch: 40.00, sPLSDA-batch: 36.22) than PLSDA-batch.

Alignment scores

To use the alignment_score() function from $\color{orange}{\text{PLSDAbatch}}$, we need to specify the proportion of data variance to explain (var), the number of nearest neighbours (k) and the number of principal components to estimate (ncomp). We then use ggplot() function from $\color{orange}{\text{ggplot2}}$ to visualise the results.

# AD data
ad.scores <- c()
names(ad.batch) <- rownames(ad.clr)
for(i in seq_len(length(ad.corrected.list))){
    res <- alignment_score(data = ad.corrected.list[[i]], 
                            batch = ad.batch, 
                            var = 0.95, 
                            k = 8, 
                            ncomp = 50)
    ad.scores <- c(ad.scores, res)
}

ad.scores.df <- data.frame(scores = ad.scores, 
                            methods = names(ad.corrected.list))

ad.scores.df$methods <- factor(ad.scores.df$methods, 
                                levels = rev(names(ad.corrected.list)))


ggplot() + geom_col(aes(x = ad.scores.df$methods, 
                        y = ad.scores.df$scores)) + 
    geom_text(aes(x = ad.scores.df$methods, 
                    y = ad.scores.df$scores/2, 
                    label = round(ad.scores.df$scores, 3)), 
                size = 3, col = 'white') + 
    coord_flip() + theme_bw() + ylab('Alignment Scores') + 
    xlab('') + ylim(0,0.85)

The alignment scores complement the PCA results, especially when batch effect removal is difficult to assess on PCA sample plots. For example in Figure 5, we observed that the samples across different batches were better mixed after batch effect correction with different methods than before, whereas the performance of difference methods was difficult to compare. Since a higher alignment score indicates that samples are better mixed, as shown in the above bar plot, sPLSDA-batch gave a superior performance compared to PLSDA-batch.

Variable selection

After batch effect correction, we can select discriminative variables against different treatments.

Here, we use splsda() from $\color{orange}{\text{mixOmics}}$ to select the top 50 microbial variables that, in combination, discriminate the different treatment groups in the $\color{blue}{\text{AD data}}$.

For the details to apply sPLS-DA, see mixOmics.

splsda.plsda_batch <- splsda(X = ad.PLSDA_batch, Y = ad.trt, 
                            ncomp = 3, keepX = rep(50,3))
select.plsda_batch <- selectVar(splsda.plsda_batch, comp = 1)
head(select.plsda_batch$value)

splsda.splsda_batch <- splsda(X = ad.sPLSDA_batch, Y = ad.trt, 
                            ncomp = 3, keepX = rep(50,3))
select.splsda_batch <- selectVar(splsda.splsda_batch, comp = 1)
head(select.splsda_batch$value)

length(intersect(select.plsda_batch$name, select.splsda_batch$name))

The discriminative variables were selected and listed according to their contributions against sample groups treated with different ranges of phenol concentration (0-0.5 vs. 1-2 g/L).

The overlap between selections from the data corrected with PLSDA-batch and sPLSDA-batch is high (43 out of 50), but there still exist different variables between different selections.

Session Information

sessionInfo()

References



EvaYiwenWang/PLSDAbatch documentation built on Sept. 25, 2024, 8:54 p.m.